1
|
Yan C, Zhu X, Ren Y, Guan S, He S, Qiu F, Huang M, Qu X, Liu H. Protein-based nano delivery systems focusing on protein materials, fabrication strategies and applications in ischemic stroke intervention: A review. Int J Biol Macromol 2025; 311:143645. [PMID: 40311959 DOI: 10.1016/j.ijbiomac.2025.143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ischemic stroke (IS), characterized by acute cerebral vascular occlusion and narrow therapeutic windows, poses formidable clinical challenges due to the blood-brain barrier (BBB) restriction, reperfusion injury risks, and limited efficacy of conventional thrombolytic therapies. These hurdles necessitate advanced delivery systems capable of precise BBB penetration, remodeled circulation, and neuroprotection. Proteins and peptides emerge as universal biomaterials for constructing nano-delivery platforms, leveraging their biocompatibility, biodegradability, low toxicity, and receptor-specific targeting. This review systematically explores protein-based nanomaterials in stroke intervention, emphasizing material selection, fabrication strategies, and therapeutic applications. Various structural proteins are analyzed for their unique advantages in carrier design, while peptide modifications are highlighted for enhancing targeted delivery. Critical fabrication techniques are discussed to balance stability and functionality. Furthermore, the applications of protein-based nanomaterials in IS therapy are summarized. Advanced preparation and application of protein-based nanomaterials, from delivery vehicles to ligand modification, potentially prolong the therapeutic window for IS and provide effective neuroprotection.
Collapse
Affiliation(s)
- Chao Yan
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - XuChun Zhu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing 100036, China
| | | | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Haidian 100080, China; Guizhou Institute of Technology, Guizhou 550000, China.
| |
Collapse
|
2
|
Yusuf H, Fitriana SC, Darmawan NLEP, Nisa RA, Sari R, Setyawan D. Spray-Dried Powders of Casein-Encapsulated Rutin Stabilized With Sugars for the Enhancement of Intestinal Drug Solubility. Adv Pharmacol Pharm Sci 2025; 2025:9952737. [PMID: 40225228 PMCID: PMC11991810 DOI: 10.1155/adpp/9952737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 04/15/2025] Open
Abstract
Numerous therapeutic potentials of rutin (RUT) including cardioprotective, neuroprotective, and antihypertension activities have attracted many studies to bring it into clinical use. RUT is phytochemically derived from plants such as apples and tea. It is poorly soluble and very sensible to acidic pH in the stomach environment which leads to conceded oral bioavailability. In contrast, RUT is better soluble in basic environment, thus, encapsulating RUT within enteric microparticles (RUT-MP) using casein (CAS) resolved such problems. The encapsulation by spray-drying employed sugars (lactose, sucrose, and maltodextrin) as bulking agents and for stabilization of the amorphous drug. The developed RUT-MP formulations were prepared in two groups i.e., lower and higher RUT concentrations. The solid states were studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Solubility tests were also carried out on the samples to examine the outcome of the engineered physical modification. The results showed that the RUT-MPs were spherical in morphology. The RUT was transformed into amorphous structure as suggested by the XRD and DTA results indicating that RUT was molecularly dispersed in the RUT-MP. There were no phase separations that occurred as confirmed by the DTA data. Solubility tests carried out on the RUT-MPs showed that the encapsulation with CAS in group with higher concentration of RUT prevented the drug against recovery of the crystallinity and phase separations. The solubility test revealed various substantial enhancements of RUT solubility of the RUT-MPs at pH 7.0. The highest enhancement of RUT solubility was 191,5-fold, with respect to pure RUT. The presence of sugars was beneficial as they improved the yield percentage and might have contributed to the prevention of nano-crystal aggregation which made them a determining aspect for the successful application of spray-dried encapsulation.
Collapse
Affiliation(s)
- Helmy Yusuf
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Sinta Choirunissa Fitriana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | | | - Revalida Ainun Nisa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Dwi Setyawan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Biermann L, Tadele LR, Benatto Perino EH, Nicholson R, Lilge L, Hausmann R. Recombinant Production of Bovine α S1-Casein in Genome-Reduced Bacillus subtilis Strain IIG-Bs-20-5-1. Microorganisms 2025; 13:60. [PMID: 39858828 PMCID: PMC11767299 DOI: 10.3390/microorganisms13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cow's milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging. However, the potential of genome-reduced Bacillus subtilis was applied for the recombinant production of bovine αS1-casein protein. METHODS A plasmid-based gene expression system was established in B. subtilis allowing the production of his-tagged codon-optimized bovine αS1-casein. Upscaling in a fed-batch bioreactor system for high cell-density fermentation processes allowed for efficient recombinant αS1-casein production. After increasing the molecular abundance of the recombinant αS1-casein protein using immobilized metal affinity chromatography, zeta potential and particle size distribution were determined in comparison to native bovine αS1-casein. RESULTS Non-sporulating B. subtilis strain BMV9 and genome-reduced B. subtilis strain IIG-Bs-20-5-1 were applied for recombinant αS1-casein production. Casein was detectable only in the insoluble protein fraction of the genome-reduced B. subtilis strain. Subsequent high cell-density fed-batch bioreactor cultivations using strain IIG-Bs-20-5-1 resulted in a volumetric casein titer of 56.9 mg/L and a yield of 1.6 mgcasein/gCDW after reducing the B. subtilis protein content. Comparative analyses of zeta potential and particle size between pre-cleaned recombinant and native αS1-casein showed pH-mediated differences in aggregation behavior. CONCLUSIONS The study demonstrates the potential of B. subtilis for the recombinant production of bovine αS1-casein and underlines the potential of genome reduction for the bioproduction of difficult-to-produce proteins.
Collapse
Affiliation(s)
- Lennart Biermann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Lea Rahel Tadele
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Elvio Henrique Benatto Perino
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Reed Nicholson
- Motif FoodWorks, Inc., 27 Drydock Ave, Boston, MA 02210, USA;
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany; (L.B.); (L.R.T.); (E.H.B.P.); (R.H.)
| |
Collapse
|
4
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
5
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
6
|
Cesarz-Andraczke K, Staszuk M, Tunçay T, Woźniak A, Smok W, Tunçay B. Influence of casein on the degradation process of polylactide-casein coatings for resorbable alloys. Sci Rep 2024; 14:18946. [PMID: 39147799 PMCID: PMC11327277 DOI: 10.1038/s41598-024-69956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
This study used the dip-coating method to develop a new biocompatible coating composed of polylactide (PLA) and casein for ZnMg1.2 wt% alloy implants. It evaluated its impact on the alloy's degradation in a simulated body fluid. After 168 h of immersion in Ringer's solution, surface morphology analysis showed that the PLA-casein coatings demonstrated uniform degradation, with the corrosion current density measured at 48 µA/cm2. Contact angle measurements indicated that the average contact angles for the PLA-casein-coated samples were below 80°, signifying a hydrophilic nature that promotes cell adhesion. Fourier-transform infrared spectroscopy (FTIR) revealed no presence of lactic acid on PLA-casein coatings after immersion, in contrast to pure PLA coatings. Pull-off adhesion tests showed tensile strength values of 7.6 MPa for pure PLA coatings and 5 MPa for PLA-casein coatings. Electrochemical tests further supported the favorable corrosion resistance of the PLA-casein coatings, highlighting their potential to reduce tissue inflammation and improve the biocompatibility of ZnMg1.2 wt% alloy implants.
Collapse
Affiliation(s)
- Katarzyna Cesarz-Andraczke
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland.
| | - Marcin Staszuk
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Tansel Tunçay
- Manufacturing Engineering Department, Technology Faculty, Karabuk University, Karabuk, Turkey
| | - Anna Woźniak
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Weronika Smok
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | - Badegül Tunçay
- Mechanical Engineering Department, Engineering Faculty, Karabuk University, Karabuk, Turkey
| |
Collapse
|
7
|
Alsakhawy SA, Baghdadi HH, El-Shenawy MA, El-Hosseiny LS. Enhancement of lemongrass essential oil physicochemical properties and antibacterial activity by encapsulation in zein-caseinate nanocomposite. Sci Rep 2024; 14:17278. [PMID: 39068244 PMCID: PMC11283490 DOI: 10.1038/s41598-024-67273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Essential oils (EOs) represent a pivotal source for developing potent antimicrobial drugs. However, EOs have seldom found their way to the pharmaceutical market due to their instability and low bioavailability. Nanoencapsulation is an auspicious strategy that may circumvent these limitations. In the current study, lemongrass essential oil (LGO) was encapsulated in zein-sodium caseinate nanoparticles (Z-NaCAS NPs). The fabricated nanocomposite was characterized using dynamic light scattering, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy. The antimicrobial activity of LGO loaded NPs was assessed in comparison to free LGO against Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae. Furthermore, their antibacterial mechanism was examined by alkaline phosphatase, lactate dehydrogenase, bacterial DNA and protein assays, and scanning electron microscopy. Results confirmed the successful encapsulation of LGO with particle size of 243 nm, zeta potential of - 32 mV, and encapsulation efficiency of 84.7%. Additionally, the encapsulated LGO showed an enhanced thermal stability and a sustained release pattern. Furthermore, LGO loaded NPs exhibited substantial antibacterial activity, with a significant 2 to 4 fold increase in cell wall permeability and intracellular enzymes leakage versus free LGO. Accordingly, nanoencapsulation in Z-NaCAS NPs improved LGO physicochemical and antimicrobial properties, expanding their scope of pharmaceutical applications.
Collapse
Affiliation(s)
- Sara A Alsakhawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Moustafa A El-Shenawy
- Department of Food Microbiology, National Research Center, Dokki, Cairo, 12311, Egypt
| | - Lobna S El-Hosseiny
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
8
|
Khan MA, Hemar Y, Li J, Yang Z, De Leon-Rodriguez LM. Fabrication, characterization, and potential applications of re-assembled casein micelles. Crit Rev Food Sci Nutr 2023; 64:7916-7940. [PMID: 36995267 DOI: 10.1080/10408398.2023.2193846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Re-assembled casein micelles (rCMs), were formulated in the 1970s as a model system to understand native casein micelles (nCMs) in milk. These early works allowed an understanding of the critical factors involved in the formation of rCMs, such as minerals (citrate, phosphate, and calcium), casein type (αs-, β-, and κ-casein) and the extent of their phosphorylation. rCMs were also used to understand the effect of treatments such as ethanol, high hydrostatic pressure and heating on the stability and integrity of the micelles. More recently, the applications of rCMs have been investigated, these include their use as a nanocarrier of bioactive molecules and as electrode-bound substrates to monitor chymosin activity by electrochemistry, to cite a few. Moreover, the potential to use rCMs in both food and non-food applications remains to be fully exploited. The advantage of choosing rCMs over nCMs as an encapsulant and a lucrative food ingredient is due to their more efficient preparation and being free from impurities. In this review, we report on the formulation of rCMs, their physico-chemical properties and their behavior under different physico-chemical treatments, along with the applications and challenges of rCMs in food systems and their industrial production as a dairy ingredient.
Collapse
Affiliation(s)
| | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jiecheng Li
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Zhi Yang
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | | |
Collapse
|
9
|
Cui H, Zang Z, Jiang Q, Bao Y, Wu Y, Li J, Chen Y, Liu X, Yang S, Si X, Li B. Utilization of ultrasound and glycation to improve functional properties and encapsulated efficiency of proteins in anthocyanins. Food Chem 2023; 419:135899. [PMID: 37023676 DOI: 10.1016/j.foodchem.2023.135899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The purpose of this study is to explore the optimal conditions for the preparation of bovine serum albumin (BSA)/casein (CA)-dextran (DEX) conjugates by ultrasonic pretreatment combined with glycation (U-G treatment). When BSA and CA were treated with ultrasound (40% amplitude, 10 min), the grafting degree increased 10.57% and 6.05%, respectively. Structural analysis revealed that ultrasonic pretreatment changed the secondary structure, further affected functional properties of proteins. After U-G treatment, the solubility and thermal stability of BSA and CA was significantly increased, and the foaming and emulsifying capacity of proteins were also changed. Moreover, ultrasonic pretreatment and glycation exhibited a greater impact on BSA characterized with highly helical structure. Complexes fabricated by U-G-BSA/CA and carboxymethyl cellulose (CMC) exhibited protection on anthocyanins (ACNs), delaying the thermal degradation of ACNs. In conclusion, the protein conjugates treated by ultrasonic pretreatment combined with glycation have excellent functionality and are potential carrier materials.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoli Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014 China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
10
|
Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA, Rozhnikova TV, Tereshina ED, Mochalova EN, Shipunova VO. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo. Pharmaceutics 2023; 15:231. [PMID: 36678860 PMCID: PMC9861179 DOI: 10.3390/pharmaceutics15010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.
Collapse
Affiliation(s)
| | | | | | - Anna M. Iureva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vera L. Kovalenko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Fedor A. Zavalko
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | | | - Elizaveta N. Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Victoria O. Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
11
|
|
12
|
Cheng Y, Liu D, Zeng M, Chen J, Mei X, Cao X, Liu J. Milk β-casein as delivery systems for luteolin: Multi-spectroscopic, computer simulations, and biological studies. J Food Biochem 2022; 46:e14133. [PMID: 35332561 DOI: 10.1111/jfbc.14133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
β-Casein, a highly amphiphilic calcium-sensitive phosphoprotein, has specific features that promote its application as a nanocarrier for hydrophobic bioactives. Luteolin is a flavonoid with rich biological activities existing in vegetables and fruits. It is important to understand the interaction of β-casein with luteolin for the development of β-casein-based delivery systems. Here, the interaction mode between luteolin and β-casein was investigated with multispectral techniques, computer simulation, and biological methods. The results demonstrated that luteolin could bind to β-casein spontaneously which is driven by hydrophobic interactions and statically quench the intrinsic fluorescence of β-casein. Molecular docking and molecular dynamics simulation showed that β-casein formed a stable complex with luteolin. It could be concluded that luteolin was encapsulated in β-casein micelles and exhibited higher antioxidant activity than luteolin alone. These results would be helpful to understand the interaction mechanism of luteolin with β-casein and indicated that β-casein micelles were very promising as delivery vehicles for luteolin. PRACTICAL APPLICATIONS: Adding bioactive compounds to food is an efficient method of functional food processing, and protein is an excellent natural carrier for these substances. β-Casein is a milk protein with a unique amphiphilic structure that makes it a natural nanocarrier for active ingredients. This study created β-casein nanocarriers and encapsulated luteolin based on the interaction mechanism between β-casein with luteolin. Luteolin encapsulated in β-casein micelles demonstrated higher antioxidant activity when compared to free luteolin. This research will provide useful data for the development of functional foods based on β-casein and luteolin in the food industry.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Dan Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Meng Zeng
- Tianjin Academy of Environmental Sciences, Tianjin, P.R. China
| | - Junliang Chen
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xueying Mei
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| |
Collapse
|