1
|
Shukla A, Dumpa NR, Thakkar R, Shettar A, Ashour E, Bandari S, Repka MA. Influence of Poloxamer on the Dissolution and Stability of Hot-Melt Extrusion-Based Amorphous Solid Dispersions Using Design of Experiments. AAPS PharmSciTech 2023; 24:107. [PMID: 37100926 DOI: 10.1208/s12249-023-02562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The current study aimed to see the effects of poloxamer P407 on the dissolution performance of hydroxypropyl methylcellulose acetate succinate (AquaSolve™ HPMC-AS HG)-based amorphous solid dispersions (ASD). A weakly acidic, poorly water-soluble active pharmaceutical ingredient (API), mefenamic acid (MA), was selected as a model drug. Thermal investigations, including thermogravimetry (TG) and differential scanning calorimetry (DSC), were conducted for raw materials and physical mixtures as a part of the pre-formulation studies and later to characterize the extruded filaments. The API was blended with the polymers using a twin shell V-blender for 10 min and then extruded using an 11-mm twin-screw co-rotating extruder. Scanning electron microscopy (SEM) was used to study the morphology of the extruded filaments. Furthermore, Fourier-transform infrared spectroscopy (FT-IR) was performed to check the intermolecular interactions of the components. Finally, to assess the in vitro drug release of the ASDs, dissolution testing was conducted in phosphate buffer (0.1 M, pH 7.4) and hydrochloric acid-potassium chloride (HCl-KCl) buffer (0.1 M, pH 1.2). The DSC studies confirmed the formation of the ASDs, and the drug content of the extruded filaments was observed to be within an acceptable range. Furthermore, the study concluded that the formulations containing poloxamer P407 exhibited a significant increase in dissolution performance compared to the filaments with only HPMC-AS HG (at pH 7.4). In addition, the optimized formulation, F3, was stable for over 3 months when exposed to accelerated stability studies.
Collapse
Affiliation(s)
- Ashay Shukla
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Nagi Reddy Dumpa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Rishi Thakkar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Abhishek Shettar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, 38677, Mississippi, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, 38677, Mississippi, USA.
| |
Collapse
|
2
|
Echanur VA, Matadh AV, Pragathi SG, Sarasija S, Thean Y, Badruddoza AZ, Shah J, Kulkarni V, Ajjarapu S, Reena NM, Shivakumar HN, Murthy SN. Continuous Manufacturing of Oil in Water (O/W) Emulgel by Extrusion Process. AAPS PharmSciTech 2023; 24:76. [PMID: 36899180 DOI: 10.1208/s12249-023-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Pharmaceutical industries and drug regulatory agencies are inclining towards continuous manufacturing due to better control over the processing conditions and in view to improve product quality. In the present work, continuous manufacturing of O/W emulgel by melt extrusion process was explored using lidocaine as an active pharmaceutical ingredient. Emulgel was characterized for pH, water activity, globule size distribution, and in vitro release rate. Additionally, effect of temperature (25°C and 60°C) and screw speed (100, 300, and 600 rpm) on the globule size and in vitro release rate was studied. Results indicated that at a given temperature, emulgel prepared under screw speed of 300 rpm resulted in products with smaller globules and faster drug release.
Collapse
Affiliation(s)
- V Anusha Echanur
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S G Pragathi
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S Sarasija
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | | | | | | | | | | | - N M Reena
- Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bangalore, India.,KLE College of Pharmacy, Bangalore, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bangalore, India. .,Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA.
| |
Collapse
|
3
|
Alzahrani A, Youssef AAA, Nyavanandi D, Tripathi S, Bandari S, Majumdar S, Repka MA. Design and optimization of ciprofloxacin hydrochloride biodegradable 3D printed ocular inserts: Full factorial design and in-vitro and ex-vivo evaluations: Part II. Int J Pharm 2023; 631:122533. [PMID: 36566827 PMCID: PMC9851809 DOI: 10.1016/j.ijpharm.2022.122533] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Coupling hot-melt extrusion (HME) with fused deposition modeling three-dimensional printing (FDM-3DP) can facilitate the fabrication of tailored, patient-centered, and complex-shaped ocular dosage forms. We fabricated ciprofloxacin HCl ocular inserts by coupling high-throughput, solvent-free, and continuous HME with FDM-3DP. Insert fabrication utilized biocompatible, biodegradable, bioadhesive Klucel™ hydroxypropyl cellulose polymer, subjected to distinct FDM-3DP processing parameters, utilizing a design of experiment approach to achieve a tailored release profile. We determined the drug content, thermal properties, drug-excipient compatibility, surface morphology, in vitro release, antibacterial activity, ex-vivo transcorneal permeation, and stability of inserts. An inverse relationship was noted between insert thickness, infill density, and drug release rate. The optimized design demonstrated an amorphous solid dispersion with an extended-release profile over 24 h, no physical or chemical incompatibility, excellent mucoadhesive strength, smooth surface, lack of bacterial growth (Pseudomonas aeruginosa) in all release samples, and prolonged transcorneal drug flux compared with commercial eye drops and immediate-release inserts. The designed inserts were stable at room temperature considering drug content, thermal behavior, and release profile over three months. Overall, the fabricated insert could reduce administration frequency to once-daily dosing, affording a promising topical delivery platform with prolonged antibacterial activity and superior therapeutic outcomes for managing ocular bacterial infections.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Siddharth Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA,Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA,Correspondence: Dr. Michael A. Repka, Chair & Distinguished Professor, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA. Tel.: +1 (662) 915-1155; fax: +1 (662) 915-1177.
| |
Collapse
|
4
|
Dai J, Tian S, Yang X, Liu Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem 2022; 10:891484. [PMID: 36226121 PMCID: PMC9548580 DOI: 10.3389/fchem.2022.891484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Triazole, comprising three nitrogen atoms and two carbon atoms, is divided into two isomers 1,2,3-triazole and 1,2,4-triazole. Compounds containing a triazole are one of the significant heterocycles that exhibit broad biological activities, such as antimicrobial, analgesic, anti-inflammatory, anticonvulsant, antineoplastic, antimalarial, antiviral, antiproliferative, and anticancer activities. A great quantity of drugs with a triazole structure has been developed and proved, for example, ketoconazole and fluconazole. Given the importance of the triazole scaffold, its synthesis has attracted much attention. This review summarizes the synthetic methods of triazole compounds from various nitrogen sources in the past 20 years.
Collapse
|
5
|
Shankar VK, Shettar A, Rangappa S, Ellis I, Dave M, Murthy R, Murthy SN. Effect of Lipid Vehicles on Solubility, Stability, and Topical Permeation of Delta-9-Tetrahydrocannabinol. AAPS PharmSciTech 2022; 23:223. [PMID: 35962264 DOI: 10.1208/s12249-022-02385-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Delta-9-tetrahydrocannabinol (THC) is one of the most effective antinociceptive agents used in the treatment of peripheral neuropathy. THC is highly lipophilic and susceptible to thermal and oxidative degradation. Identifying appropriate solvents in which THC is stable as well as adequately solubilized is crucial in developing topical dosage forms. Lipid solvent systems are of utmost utility and relevance for formulating highly lipophilic drugs. Hence, the objective of this project was to screen the solubility of THC in lipidic excipients, monitor THC content in the selected vehicles during stability, and study the influence of these excipients on permeation of THC across skin. The solubility of THC in liquid lipid excipients was in the range of 421 to 500 mg/g. The solubility of THC in solid lipid excipients was in the range of 250 to 750 mg/g. THC in its neat form was poorly stable, but when dissolved in lipid-based excipients, its stability improved significantly. THC in lipid excipients was more stable at 4 ± 3°C compared to samples stored at 25 ± 2°C. The antioxidants (butylated hydroxytoluene and ascorbyl palmitate) used in the excipients further improved the stability of THC. The results demonstrated that the liquid and solid lipid excipients used in the study could solubilize THC freely and mitigate the degradation of THC significantly. The binary combination of lipid excipients enhanced THC skin permeation and retention, demonstrating the potential for topical formulation development of THC.
Collapse
Affiliation(s)
- Vijay Kumar Shankar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Abhishek Shettar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Srinath Rangappa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Inayet Ellis
- Gattefosse Corporation, Paramus, New Jersey, 07652, USA
| | - Masumi Dave
- Gattefosse Corporation, Paramus, New Jersey, 07652, USA
| | - Reena Murthy
- Topical Products Testing LLC, University, Mississippi, 38677, USA
| | - S Narasimha Murthy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA. .,Institute for Drug Delivery and Biomedical Research, Bangalore, India.
| |
Collapse
|
6
|
Fabrication of a Shell-Core Fixed-Dose Combination Tablet Using Fused Deposition Modeling 3D Printing. Eur J Pharm Biopharm 2022; 177:211-223. [PMID: 35835328 DOI: 10.1016/j.ejpb.2022.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.
Collapse
|