1
|
Luo H, Wang X, Fang M, Yu H, Gui L, Wu Z, Sheng J, Li F. Combined Hydroxyethyl Starch Luteolin Nanocrystals for Effective Anti-Hyperuricemia Effect in Mice Model. Int J Nanomedicine 2024; 19:5139-5156. [PMID: 38859954 PMCID: PMC11162967 DOI: 10.2147/ijn.s464948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.
Collapse
Affiliation(s)
- Han Luo
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Xiaofei Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Mengqi Fang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Zhengkun Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Jianyong Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| |
Collapse
|
2
|
Wang W, Yang C, Xue L, Wang Y. Key Challenges, Influencing Factors, and Future Perspectives of Nanosuspensions in Enhancing Brain Drug Delivery. Curr Pharm Des 2024; 30:2524-2537. [PMID: 38988170 DOI: 10.2174/0113816128317347240625105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Bloodbrain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.
Collapse
Affiliation(s)
- Wenlu Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chongzhao Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Linying Xue
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
3
|
Aguilar-Hernández G, López-Romero BA, Nicolás-García M, Nolasco-González Y, García-Galindo HS, Montalvo-González E. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities. Food Res Int 2023; 174:113583. [PMID: 37986449 DOI: 10.1016/j.foodres.2023.113583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Nanosuspensions (NSps) are colloidal dispersions of particles that have the potential to solve the delivery problems of active ingredients associated with their low solubility in water or instability due to environmental factors. It is essential to consider their chemical composition and preparation methods because they directly influence drug loading, size, morphology, solubility, and stability; these characteristics of nanosuspensions influence the delivery and bioavailability of active ingredients. NSps provides high loading of drugs, protection against degrading agents, rapid dissolution, high particle stability, and high bioavailability of active ingredients across biological membranes. In addition, they provide lower toxicity compared to other nanocarriers, such as liposomes or polymeric nanoparticles, and can modify the pharmacokinetic profiles, thus improving their safety and efficacy. The present review aims to address all aspects related to the composition of NSps, the different methods for their production, and the main factors affecting their stability. Moreover, recent studies are described as carriers of active ingredients and their biological activities.
Collapse
Affiliation(s)
- Gabriela Aguilar-Hernández
- División de Ciencias Agropecuarias e Ingenierías, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Brandon A López-Romero
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico
| | - Mayra Nicolás-García
- Ingeniería en Industrias Alimentarias, Tecnológico Nacional de México/Instituto Tecnológico Superior de Teziutlán, Fracción I y II, Aire Libre S/N, 73960, Teziutlán, Puebla, México
| | - Yolanda Nolasco-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Santiago Ixcuintla, Km 6 Carr. México-Nogales, Santiago Ixcuintla, 63300, Nayarit, Mexico
| | - Hugo S García-Galindo
- Tecnológico Nacional de México/Institito Tecnológico de Veracruz. nstituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo de Alimentos, Av. Miguel Ángel de Quevedo 2779, Veracruz 91897, Veracruz, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175, Nayarit, Mexico.
| |
Collapse
|
4
|
He W, Zhang J, Ju J, Wu Y, Zhang Y, Zhan L, Li C, Wang Y. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv Transl Res 2023; 13:2885-2902. [PMID: 37149557 DOI: 10.1007/s13346-023-01357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.
Collapse
Affiliation(s)
- Wen He
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junfeng Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiale Ju
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinghua Wu
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuxi Zhang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lin Zhan
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chenchen Li
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yanli Wang
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Tropical Translation Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
5
|
Guo M, Qin S, Wang S, Sun M, Yang H, Wang X, Fan P, Jin Z. Herbal Medicine Nanocrystals: A Potential Novel Therapeutic Strategy. Molecules 2023; 28:6370. [PMID: 37687199 PMCID: PMC10489021 DOI: 10.3390/molecules28176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Herbal medicines have gained recognition among physicians and patients due to their lower adverse effects compared to modern medicines. They are extensively used to treat various diseases, including cancer, cardiovascular issues, chronic inflammation, microbial contamination, diabetes, obesity, and hepatic disorders, among others. Unfortunately, the clinical application of herbal medicines is limited by their low solubility and inadequate bioavailability. Utilizing herbal medicines in the form of nanocrystals (herbal medicine nanocrystals) has shown potential in enhancing solubility and bioavailability by reducing the particle size, increasing the specific surface area, and modifying the absorption mechanisms. Multiple studies have demonstrated that these nanocrystals significantly improve drug efficacy by reducing toxicity and increasing bioavailability. This review comprehensively examines therapeutic approaches based on herbal medicine nanocrystals. It covers the preparation principles, key factors influencing nucleation and polymorphism control, applications, and limitations. The review underscores the importance of optimizing delivery systems for successful herbal medicine nanocrystal therapeutics. Furthermore, it discusses the main challenges and opportunities in developing herbal medicine nanocrystals for the purpose of treating conditions such as cancer, inflammatory diseases, cardiovascular disorders, mental and nervous diseases, and antimicrobial infections. In conclusion, we have deliberated regarding the hurdles and forthcoming outlook in the realm of nanotoxicity, in vivo kinetics, herbal ingredients as stabilizers of nanocrystals, and the potential for surmounting drug resistance through the utilization of nanocrystalline formulations in herbal medicine. We anticipate that this review will offer innovative insights into the development of herbal medicine nanocrystals as a promising and novel therapeutic strategy.
Collapse
Affiliation(s)
- Mengran Guo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Sun
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Huiling Yang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|