1
|
Loni S, U S S, Zohmingliani R, Sumanth S. A review article on transethosomes: revolutionizing drug delivery through transdermal patches. Drug Dev Ind Pharm 2025:1-11. [PMID: 40381612 DOI: 10.1080/03639045.2025.2507688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Transethosomes, advanced nanovesicular carriers, have emerged as a revolutionary drug delivery system, particularly for transdermal patches. Combining the structural flexibility of ethosomes and the penetration-enhancing properties of surfactants, transethosomes offer remarkable advantages in overcoming the skin barrier to deliver a broad range of therapeutic agents. These vesicles enhance drug permeation, improve bioavailability, and enable controlled and sustained release, making them a promising alternative to conventional drug delivery methods. This review explores the unique composition, mechanisms of action, and penetration pathways of transethosomes while highlighting their application in various therapeutic areas, including pain management, dermatology, and hormone replacement therapies. Additionally, the article discusses the potential for transethosomes to target specific skin layers or cells, improving drug localization and minimizing systemic side effects. Current challenges, such as formulation stability, variability in skin types, and regulatory hurdles, are critically analyzed, alongside underexplored areas like large biomolecule delivery and multi-drug systems. Emerging trends, including personalized medicine, combination therapies, and stimuli-responsive formulations, are also reviewed, emphasizing the future potential of transethosomes in drug delivery innovation. By addressing these aspects, this article provides comprehensive insights into the transformative role of transethosomes in revolutionizing transdermal drug delivery systems.
Collapse
Affiliation(s)
- Siddharam Loni
- Associate Professor, Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore, India
| | - Suma U S
- Associate Professor, Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore, India
| | - R Zohmingliani
- Associate Professor, Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore, India
| | | |
Collapse
|
2
|
Rezigue M, Mashaqbeh H, Aljabali AAA, Mansour RSH, Hamzeh I. Development and Evaluation of Azithromycin-Loaded Transethosomes for Enhanced Dermal Delivery and Antibacterial Efficacy. Pharmaceutics 2025; 17:400. [PMID: 40284398 PMCID: PMC12030721 DOI: 10.3390/pharmaceutics17040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The topical delivery of antibiotics through transethosomes shows promise for enhancing its dermal delivery for the treatment of skin infections. This study aimed to develop and characterize azithromycin-loaded transethosomes to enhance topical drug delivery and improve the antibacterial activity of azithromycin. Methods: The prepared azithromycin formulations underwent assessment for various characteristics, including their vesicle dimensions, size distribution, zeta potential, encapsulation efficiency, and morphological features (via TEM analysis). Additionally, their thermal properties were examined through DSC analysis, and their stability was monitored over six months under refrigerated storage conditions. The sequential tape-stripping technique was employed to conduct ex vivo penetration studies on human skin. Interactions between transethosomes and stratum corneum lipids were examined using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Additionally, the formulations were tested for their in vitro antibacterial efficacy against Staphylococcus aureus. Results: The findings revealed that AZ 1 and AZ 2 had vesicle sizes of 108.44 ± 5.72 nm and 70.42 ± 6.02 nm, zeta potential measurements of -11.897 ± 1.820 mV and -34.575 ± 4.535 mV, and high entrapment efficiencies of 99.259 ± 0.086% and 99.560 ± 0.014%, respectively. Transmission electron microscopy (TEM) analysis confirmed the spherical nature of the vesicles, whereas differential scanning calorimetry (DSC) confirmed the successful encapsulation of azithromycin in transethosomes. The formulations exhibited acceptable physical stability at 4 °C for six months. Ex vivo studies revealed a significantly higher deposition of azithromycin in the skin by both transethosome formulations than by the drug solution (p < 0.05), with low systemic absorption. Among the formulations, AZ 2 resulted in much deeper skin penetration, with deeper dermal and epidermal layer deposition (1.388 ± 0.242 µg/cm2) compared to AZ 1 (four-fold higher, p < 0.05) and to the control drug solution (12 times more, p < 0.05). Analysis using ATR-FTIR suggested that azithromycin-loaded transethosomes improve the drug penetration by increasing the lipid fluidity and extracting lipids from the stratum corneum. Moreover, the transethosomes loaded with azithromycin demonstrated enhanced antibacterial efficacy against Staphylococcus aureus, with minimum inhibitory concentration (MIC) values that were lower than those of the free drug solution. Conclusion: The results highlight the promising potential of transethosomes as a novel topical drug delivery system for azithromycin that offers improved therapeutic effects against skin infections.
Collapse
Affiliation(s)
- Meriem Rezigue
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Hadeia Mashaqbeh
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Alaa A. A. Aljabali
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Randa SH. Mansour
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan;
| | - Iyad Hamzeh
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
3
|
Akl MA, Eldeen MA, Kassem AM. Beyond Skin Deep: Phospholipid-Based Nanovesicles as Game-Changers in Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:184. [PMID: 39138693 DOI: 10.1208/s12249-024-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Transdermal administration techniques have gained popularity due to their advantages over oral and parenteral methods. Noninvasive, self-administered delivery devices improve patient compliance and control drug release. Transdermal delivery devices struggle with the skin's barrier function. Molecules over 500 Dalton (Da) and ionized compounds don't permeate through the skin. Drug encapsulation in phospholipid-based vesicular systems is the most effective skin delivery technique. Vesicular carriers include bi-layered liposomes, ultra-deformable liposomes, ethanolic liposomes, transethosomes, and invasomes. These technologies enhance skin drug permeation by increasing formula solubilization, partitioning into the skin, and fluidizing the lipid barrier. Phospholipid-based delivery systems are safe and efficient, making them a promising pharmaceutical and cosmeceutical drug delivery technique. Still, making delivery systems requires knowledge about the physicochemical properties of the drug and carrier, manufacturing and process variables, skin delivery mechanisms, technological advances, constraints, and regulatory requirements. Consequently, this review covers recent research achievements addressing the mentioned concerns.
Collapse
Affiliation(s)
- Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology, & Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Alsharquia, 7120001, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
4
|
Joga R, Kannan B, Yerram S, Nandagawale A, Gawai M, Behera HK, Kumar N, Grover P, Srivastava S, Monga G, Kumar S. Transethosome as a versatile nano vehicle for various indications and its regulatory insights. Pharm Dev Technol 2023; 28:1056-1078. [PMID: 38018532 DOI: 10.1080/10837450.2023.2289127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/26/2023] [Indexed: 11/30/2023]
Abstract
Transethosomes, classified as 3rd generation nanocarriers, have gained global acclaim due to their profound potential in addressing diverse medical conditions. Their superior dermal penetration, attributed to essential constituents, such as edge activators and alcohol, sets them apart from other nanoformulations. The current review article embarks with an introduction followed by a comprehensive exploration of transethosome structures, differentiating them from fellow nanocarriers. A detailed analysis of characteristics and the spectrum of marketed products of various nanocarriers is also provided. Furthermore, the article offers a taxonomy of preparation methods of transethosomes and reports the frequently employed methods. It briefly surveys research studies encompassing various drug categories, spanning a wide range of medical conditions. In summary, this review article is dedicated to achieving several pivotal aims and objectives. We aim to substantiate the superior attributes of transethosomes when compared to conventional commercial products and other nanoformulations, demonstrating their clinical promise in addressing various human medical conditions. Additionally, we seek to elucidate the regulatory pathway required to secure approvals for transethosomes from relevant regulatory authorities and shine a light on their innovative potential as revealed in patent literature. Collectively, these objectives contribute to a comprehensive understanding of the significance and potential of transethosomes in the field of pharmaceutical nanotechnology.
Collapse
Affiliation(s)
- Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Bharathi Kannan
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sravani Yerram
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amruta Nandagawale
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manasi Gawai
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hitesh Kumar Behera
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neeraj Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Parul Grover
- Department of Pharmaceutical Sciences, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gorav Monga
- Sharda School of Pharmacy, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
5
|
Keshwania P, Kaur N, Chauhan J, Sharma G, Afzal O, Alfawaz Altamimi AS, Almalki WH. Superficial Dermatophytosis across the World's Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS OMEGA 2023; 8:31575-31599. [PMID: 37692246 PMCID: PMC10483660 DOI: 10.1021/acsomega.3c01988] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The most prevalent infection in the world is dermatophytosis, which is a major issue with high recurrence and can affect the entire body including the skin, hair, and nails. The major goal of this Review is to acquire knowledge about cutting-edge approaches for treating dermatophytosis efficiently by adding antifungals to formulations based on nanocarriers in order to overcome the shortcomings of standard treatment methods. Updates on nanosystems and research developments on animal and clinical investigations are also presented. Along with the currently licensed formulations, the investigation also emphasizes novel therapies and existing therapeutic alternatives that can be used to control dermatophytosis. The Review also summarizes recent developments on the prevalence, management approaches, and disadvantages of standard dosage types. There are a number of therapeutic strategies for the treatment of dermatophytosis that have good clinical cure rates but also drawbacks such as antifungal drug resistance and unfavorable side effects. To improve therapeutic activity and get around the drawbacks of the traditional therapy approaches for dermatophytosis, efforts have been described in recent years to combine several antifungal drugs into new carriers. These formulations have been successful in providing improved antifungal activity, longer drug retention, improved effectiveness, higher skin penetration, and sustained drug release.
Collapse
Affiliation(s)
- Puja Keshwania
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Narinder Kaur
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Jyoti Chauhan
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Waleed H. Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|
6
|
Barakat EH, Akl MA, Ibrahim MF, Mohamed Dawaba H, Afouna MI. Formulation and optimization of theophylline-loaded enteric-coated spanlastic nanovesicles for colon delivery; Ameliorate acetic acid-induced ulcerative colitis. Int J Pharm 2023; 643:123253. [PMID: 37473974 DOI: 10.1016/j.ijpharm.2023.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Treatment of colon diseases presents one of the most significant obstacles to drug delivery due to the inability to deliver sufficient drug concentration selectively to the colon. The goal of the proposed study was to develop, optimize, and assess an effective colon target delivery system of theophylline-based nanovesicles (TP-NVs) surrounded by a biodegradable polymeric shell of chitosan (CS) and Eudragit L100 (EL100) for the treatment of ulcerative colitis (UC). TP-loaded nanovesicles were fabricated using the ethanol injection method and coated with CS and EL100, respectively. We used a 32-factorial design approach to optimize the concentration of CS and EL100 to minimize particle size (PS) and maximize the cumulative amount of theophylline released (CTR) after 24 h. The optimized formulation was described using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and in vitro release. In-vivo quantification of theophylline in the gastrointestinal tract and in-vivo targeting potential in a rat model of acetic acid-induced colitis were also thoroughly evaluated. The characteristics of the optimal formula predicted by the 32-factorial design approach corresponded exceptionally well with the measured PS of 271.3 nm, the zeta potential of -39.9 mV, and CTR of 3.95, and a 99.93% after 5 and 24 h, respectively. Notably, the in vivo results in the rat model of colitis showed that the formulation with an optimized coat significantly improved theophylline distribution to the colon and markedly decreased the expression of interleukin-6 and ulcerative lesions compared to a pure theophylline solution. These outcomes elucidated the feasibility of a 32-factorial design to detect the crucial interactions between the study's components. Our findings suggested that enteric-coated nanovesicles formulations with optimal coat compositions of 0.2693% (w/v) and 0.75% (w/v) of CS and EL100, respectively, were promising carriers for colonic delivery of theophylline, a rate-limiting step in the treatment of UC.
Collapse
Affiliation(s)
- Elsaied H Barakat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq.
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamdy Mohamed Dawaba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia Governorate, Egypt
| | - Mohsen I Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
7
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
8
|
Hassan AS, Hofni A, Abourehab MAS, Abdel-Rahman IAM. Ginger Extract-Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int J Nanomedicine 2023; 18:1259-1280. [PMID: 36945254 PMCID: PMC10024879 DOI: 10.2147/ijn.s400604] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction Ginger extract (GE) has sparked great interest due to its numerous biological benefits. However, it suffers from limited skin permeability, which challenges its transdermal application. The target of the current work was to develop transethosomes as a potential nanovehicle to achieve enhanced transdermal delivery of GE through the skin. Methods GE-loaded transethosomes were prepared by cold injection using different edge activators. The fabricated nanovesicles were evaluated for particle size, ζ-potential, encapsulation efficiency, and in vitro drug release. The selected formulation was then laden into the hydrogel system and evaluated for ex vivo permeability and in vivo anti-inflammatory activity in a carrageenan-induced rat-paw edema model. Results The selected formulation comprised of sodium deoxycholate exhibited particle size of 188.3±7.66 nm, ζ-potential of -38.6±0.08 mV, and encapsulation efficiency of 91.0%±0.24%. The developed transethosomal hydrogel containing hydroxypropyl methylcellulose was homogeneous, pseudoplastic, and demonstrated sustained drug release. Furthermore, it exhibited improved flux (12.61±0.45 μg.cm2/second), apparent skin permeability (2.43±0.008×10-6 cm/second), and skin deposition compared to free GE hydrogel. In vivo testing and histopathological examination revealed that the GE transethosomal hydrogel exhibited significant inhibition of edema swelling compared to free GE hydrogel and ketoprofen gel. The animals that were treated with ginger transethosome hydrogel showed a significant decrement in reactive oxygen species and prostaglandin E2 compared to untreated animals. Conclusion Transethosomes might be a promising new vehicle for GE for effective skin permeation and anti-inflammation. To the best of our knowledge, this work is the first utilization of transethosomes laden into hydrogel as a novel transdermal delivery system of GE.
Collapse
Affiliation(s)
- Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Iman A M Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|