1
|
Li T, Wang Z, Zhang X, Hao Z, Guo Y, Shen J, Velkov T, Dai C. Natural Product Usnic Acid as an Antibacterial Therapeutic Agent: Current Achievements and Further Prospects. ACS Infect Dis 2025. [PMID: 40371696 DOI: 10.1021/acsinfecdis.5c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant global public health threat, endangering both human and animal health. In clinical environments, AMR often undermines the effectiveness of antibacterial treatments, underscoring the urgent need to discover and develop new antibacterial agents or alternatives to antibiotics. Usnic acid, a secondary metabolite derived from lichens, has emerged as a promising candidate owing to its diverse pharmacological properties, which include antibacterial, immune-regulating, antiaging, and anti-inflammatory activities. Extensive research has shown that usnic acid exhibits strong direct antibacterial effects against Gram-positive bacteria and acts as an antimicrobial adjuvant to enhance the therapeutic efficacy of antibiotic drugs against Gram-negative pathogens. Its mechanisms of action are multifaceted, encompassing the inhibition of RNA, DNA, and protein synthesis; suppression of bacterial efflux pump protein expression and membrane-localized drug-resistant enzyme activity; disruption of cell membrane integrity and metabolic homeostasis; and reduction of virulence factor production and biofilm formation. Despite its potential, the clinical application of usnic acid as an antibacterial agent faces significant challenges including poor aqueous solubility, low bioavailability, and dose-dependent toxicity. To overcome these limitations, nanodelivery systems such as liposomes and polymeric nanoparticles have been developed to enhance solubility, improve targeted delivery, and reduce toxicity, thereby expanding its therapeutic potential. Structural modification can also enhance the antibacterial activity and address solubility issues. This review systematically consolidates current knowledge on usnic acid's antibacterial properties, molecular mechanisms, and combinatorial therapies. It critically evaluates advancements in nanoformulation strategies, assesses safety and toxicity profiles, and identifies obstacles to its development as a clinically viable antibacterial agent. By addressing these aspects, this review aims to provide actionable insights, foster interdisciplinary dialogue, and catalyze further innovation in leveraging this natural product to combat AMR.
Collapse
Affiliation(s)
- Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
| | - Xiuying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan Province, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, P.R. China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| |
Collapse
|
2
|
Liu JH, Gates WP, Yang HM, Kurniawan A, Zhou CH. Tunable Colloidal Properties of Lauramidopropyl Betaine and Li Co-modified Montmorillonite in Ethanol/Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5378-5390. [PMID: 38421604 DOI: 10.1021/acs.langmuir.3c03892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Montmorillonite (Mt) is a hydrophilic clay mineral with a generally high cationic exchange capacity and a remarkable swellability in water. Yet the application of Mt in cosmetics, paints, polymer nanocomposites, drug delivery systems, and tissue engineering are limited due to its unfavorable swelling and dispersion in alcohol/water mixtures. Improving the swellability and dispersibility of Mt in mixtures of ethanol and water remains challenging. Here, we showed that the swellability and dispersibility of Mt in ethanol/water could be significantly enhanced when lithium-Mt (Li-Mt) was intercalated by zwitterionic surfactant lauramidopropyl betaine (LPB). The binding mechanism of the LPB intercalate to Li-Mt originated from a combination of van der Waals forces, ion-dipole interaction, and electrostatic attraction. Due to the synergistic effect of Li+ and LPB, the comodified Mt (LPB-Li-Mt) exhibited excellent swellability, dispersibility, and rheological properties. The structure, morphology, zeta potential, dispersibility, and gel-forming performance of LPB-Li-Mt can be modulated by the concentrations of ethanol in ethanol/water mixtures. When the ethanol concentration increased to 75% v/v ethanol solution, the free swelling of LPB-Li-Mt remained above 80%. The results from X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoemission spectrometry, and small-angle X-ray scattering confirmed the full exfoliation of LPB-Li-Mt at 75% (v/v) ethanol solution. The formation of a stable colloidal LPB-Li-Mt dispersion in a mixture of ethanol/water might be derived from the association between water molecules and the Li+, the hydrophobic interaction, and the ion-dipole of ethanol with the LPB molecules. The findings provide a guide for improving dispersion and swelling of Mt and modified ones in water-miscible organic solvents.
Collapse
Affiliation(s)
- Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Will P Gates
- Institute for Frontier Materials, Deakin University Melbourne-Burwood, Burwood 3125, Victoria, Australia
| | - Hui Min Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
3
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
4
|
Üstün A, Örtücü S. Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms. Pharmaceutics 2022; 14:pharmaceutics14122756. [PMID: 36559250 PMCID: PMC9783353 DOI: 10.3390/pharmaceutics14122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
In this article, nisin(N)-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were prepared using the single-solvent evaporation method with a rhamnolipid(R) cosurfactant. The antibacterial-antibiofilm effects of the prepared formulation and free nisin were evaluated against S. aureus (ATCC 25923). The characterization of NPs was analyzed using scanning electron microscopy (SEM), Zetasizer and Fourier-transform infrared spectroscopy (FTIR). The drug encapsulation efficiency and loading capacity percentages of NPs were calculated by the spectrophotometric method. The drug release of N-loaded PVA-R-PLGA NPs was determined by the dialysis bag method. The antibacterial and antibiofilm activity of N-PVA-R-PLGA NPs was determined. PVA-R-PLGA-NPs were found to be spherical with sizes of ~140 nm, according to the SEM analysis and surface charge of N-PVA-R-PLGA NPs -53.23 ± 0.42 mV. The sustained release of N (≥72% after 6 h) was measured in PVA-R-PLGA-NPs. The encapsulation efficiency percentage of N-PVA-R-PLGA NP was 78%. The MIC values of free nisin and N-PVA-R-PLGA NPs were 256 μg/mL and 64 μg/mL, respectively. The antibiofilm inhibition percentages of free nisin and N-PVA-R-PLGA NPs were 28% and 72%, respectively. These results reveal that N-PVA-R-PLGA NPs are a promising formulation for use in infections caused by S. aureus compared to free nisin.
Collapse
|
5
|
Jangid AK, Solanki R, Jadav M, Bora S, Patel S, Pooja D, Kulhari H. Phenyl Boronic Acid -PEG-Stearic acid biomaterial-based and Sialic acid Targeted Nanomicelles for Colon Cancer Treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|