1
|
Zhai M, Sheng J, Zhang R, Cao M, Chen Z, Song Y. Preparation, characterization and tomato preservation applications of gelatin-polyvinyl alcohol composite films with temperature and pH responsive properties. Int J Biol Macromol 2025; 310:143262. [PMID: 40250644 DOI: 10.1016/j.ijbiomac.2025.143262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
In recent years, the construction of responsive nano-antimicrobial films has been a hot topic in reducing microbial resistance and food preservation. However, the non-degradable and mono-responsive nature of most films limits their application. In this study, silica nanoparticles were modified by imine bonding and poly-N-isopropyl acrylamide (PNIPAM), and citral (CIT) was added as an active substance to construct temperature- and pH-responsive nanoparticles (HMSS-NH2-CIT-PNIPAM, abbreviated as HNCP). It was then added to a gelatin (GEL)/polyvinyl alcohol (PVA) film to produce a degradable GP/HNCP composite film. The films were also evaluated for their physical properties, release characteristics, and tomato preservation. The tensile strength of the film was increased by 39.26 % as compared to the control. And the films had a good elongation (253.0 ± 4.53 %). The TGA results showed that the loading of CIT in HNCP was 42 % and the composite membrane could sustain the release for 120 + h under combined pH and temperature (pH 5.8/37 °C) stimulation. In addition, in tomato preservation experiments, tomatoes treated with GP7 composite film extended shelf life by 3-4 days compared with the control group. The biodegradability and good cytocompatibility of the composite membrane were demonstrated by degradation rate and MTT experiments. Therefore, GEL/PVA/HNCP smart response composite film is a smart antimicrobial packaging material with wide application prospects.
Collapse
Affiliation(s)
- Mengge Zhai
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Sheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; International Research Centre for Food and Health, China.
| | - Ruxin Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengkai Cao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyi Chen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, China.
| |
Collapse
|
2
|
Yousefiasl S, Ghovvati M, Alibakhshi A, Azizi M, Samadi P, Kumar A, Shojaeian A, Sharifi E, Zare EN, Dey AD, Chehelgerdi M, Makvandi P. Smart Mesoporous Silica Nanoparticles in Cancer: Diagnosis, Treatment, Immunogenicity, and Clinical Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408898. [PMID: 39840493 DOI: 10.1002/smll.202408898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells. The review thoroughly investigates the role of MSNs as potent drug carriers, noted for their high drug-loading capacity and controlled release, which significantly improves drug permeability and retention. Additionally, it discusses surface modification techniques that enable MSNs to target cancer cells precisely. The manuscript provides comprehensive insights into various MSN applications, including their role in cancer diagnosis, the design of advanced biosensors, and the development of both conventional and stimuli-responsive drug delivery platforms. Special focus is given to stimuli-triggered MSN systems, responsive to internal stimuli (e.g., pH, redox, enzyme) and external stimuli (e.g., temperature, magnetic field, light, ultrasound), highlighting the cutting-edge progress in MSN technology. Additionally, the review delves into the immunogenicity and biosafety aspects of MSNs, underscoring their potential for clinical translation. Besides summarizing the current state of MSN research in oncology, this review also illuminates the path for future advancements and clinical applications.
Collapse
Affiliation(s)
- Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Abbas Alibakhshi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Pouria Samadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8198314271, Iran
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824209, India
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| |
Collapse
|
3
|
Wu Y, Wang X, Li L, Wang M, Tian S, Song J, Ma Y. Preparation of Glutathione-Regulated Sorafenib Targeted Nanodrug Delivery System and Its Antihepatocellular Carcinoma Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65131-65141. [PMID: 39535062 DOI: 10.1021/acsami.4c11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
To enhance the therapeutic effect of sorafenib (SOR) on liver cancer, we have developed a targeted nanodrug delivery system with glutathione (GSH) downregulation functionality. The preparation process comprises the synthesis of amino-functionalized mesoporous silica nanoparticles (MSN-NH2), surface modification with ethacrynic acid (EA), loading of SOR into the pores, and final surface coating with hyaluronic acid (HA) to obtain SOR@MSN-EA@HA (SMEH) nanoparticles. SMEH nanoparticles specifically enter tumor cells via CD44 receptor-mediated endocytosis. EA binds to GSH to consume it, while SOR is slowly released from the pores to exert antitumor effects while inhibiting GSH production. This results in sustained oxidative stress in the cells, thus enhancing the antitumor efficacy. Both in vitro and in vivo antitumor experiments as well as hemolysis tests have demonstrated that SMEH nanoparticles can accurately target liver cancer cells, effectively downregulate GSH concentration, exhibit good antitumor effects, and possess excellent safety, showing great potential in tumor treatment.
Collapse
Affiliation(s)
- Yijun Wu
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Xiaochen Wang
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Longxia Li
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Mingyang Wang
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Sui Tian
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Jinfeng Song
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
- Joinn Laboratories (Suzhou), Taicang 215421, Jiangsu, China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, Henan, China
| |
Collapse
|
4
|
Zhu Y, Bai Y, He J, Qiu X. Advances in the stimuli-responsive mesoporous silica nanoparticles as drug delivery system nanotechnology for controlled release and cancer therapy. 3 Biotech 2023; 13:274. [PMID: 37457870 PMCID: PMC10338408 DOI: 10.1007/s13205-023-03651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/27/2023] [Indexed: 07/18/2023] Open
Abstract
Mesoporous silica nanoparticles (MSN) have attracted widespread attention in the field of drug delivery and biomedicine due to their unique structure and physicochemical properties. However, MSN still have shortcomings, such as premature drug release, poorly controlled release ability and poor targeting. Therefore, in order to reduce the damage of anti-cancer drugs to normal cells, improve their utilization rate and realize their selective release in tumor cells, "gated" stimuli-responsive mesoporous silicon nanomaterials as antitumor drug delivery carriers have attracted widespread interest among researchers. The "gated" stimuli-responsive nanovalves drug delivery system can only be removed under certain specific stimuli, which makes the drug maintain "zero release" before reaching the lesion site and achieve drug accumulation in tumor cells, effectively reducing the toxic and side effects on normal cells or tissues, and greatly exerting the efficacy of anti-cancer drugs. Therefore, the construction of stimuli-responsive nano-drug delivery systems have great application potential and significance in cancer treatment and controlled release of anti-cancer drugs. This review article emphasizes the research progress of the "gated" stimuli-responsive MSN (e.g. pH, redox potential, enzyme, temperature and light) or controlled drug release and cancer treatment since 2019.
Collapse
Affiliation(s)
- Yameng Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yu Bai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Xilong Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| |
Collapse
|