1
|
Diab M, Hamdi A, Al-Obeidat F, Hafez W, Cherrez-Ojeda I, Gador M, Rashid G, Elkhazin SF, Ibrahim MA, Ismail TF, Alkafaas SS. Discovery of drug transporter inhibitors tied to long noncoding RNA in resistant cancer cells; a computational model -in silico- study. Front Immunol 2025; 16:1511029. [PMID: 40352931 PMCID: PMC12061905 DOI: 10.3389/fimmu.2025.1511029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
Collapse
Affiliation(s)
- Mohanad Diab
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | - Amel Hamdi
- Molecular biology and Hematology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Feras Al-Obeidat
- College of Technological Innovation at Zayed University, Abu Dhabi, United Arab Emirates
| | - Wael Hafez
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Center, Cairo, Egypt
| | - Ivan Cherrez-Ojeda
- School of Health, Universidad Espíritu Santo-Ecuador, Samborondón, Guayas, Ecuador
- Respiralab Research Group, Guayaquil, Guayas, Ecuador
| | - Muneir Gador
- NMC Royal Hospital, Abu Dhabi, United Arab Emirates
| | - Gowhar Rashid
- Department of Clinical Biochemistry, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Sana F. Elkhazin
- Mediclinic Airport Road Hospital, Abu Dhabi, United Arab Emirates
| | | | | | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Abdelazeez WMA, Aboueldis GR, Suliman AA, Mohammed DM. Production of secondary metabolites in callus cultures of Scutellaria baicalensis L. and assessment of their anti-inflammatory and antioxidant efficacy in ulcerative colitis rats. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2025; 160:80. [DOI: 10.1007/s11240-025-02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/26/2025] [Indexed: 05/04/2025]
Abstract
Abstract
Baikal skullcap or Chinese (Scutellaria baicalensis L.) is an interesting plant with promising medicinal properties; however, traditional cultivation methods are time-consuming, and yield variations can be significant; callus culture is considered one of the solutions to overcome these limitations because the callus culture provides an effective, alternative for the consistent production of secondary metabolites. For callus production of S. baicalensis L., the in vitro germinating seedlings were cultured on MS medium containing 1.0 mg/L 6-benzyladenine (BAP) and 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). Three culture lines were established, and the best growth index represented in fresh and dry weight was obtained from line No. 1. S. baicalensis L. callus extract was performed on the best callus line in the stationary phase for in vitro assays. The chemical analysis, antioxidant tests, proline, flavonoids, phenolics, and macronutrient content were assessed. Therefore, this paper aims to evaluate the effectiveness of secondary metabolites in S. baicalensis L. callus and to study its biological effect on recurrent ulcerative colitis (UC). Conventional treatment of UC has focused on suppressing immunological responses instead of addressing which are (UC) underlying causes. Recurrent UC is caused by oxidative stress and inflammation that lead to chronic inflammation of the inner lining of the colon and rectum. According to the findings, secondary metabolites in S. baicalensis L. callus cultures increased antioxidant activity. This improvement in oxidative activity was positively correlated with the potential to reduce UC in vivo.
Collapse
|
3
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
4
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Du H, Li Z, Su L, He Z, Tan X, Hou F, He T, Pan Y, Xu S, Cao L, Dong S, Ma Y. Synthesis, characterization, and mechanistic insights into the enhanced anti-inflammatory activity of baicalin butyl ester via the PI3K-AKT pathway. Front Pharmacol 2024; 15:1417372. [PMID: 39104394 PMCID: PMC11298432 DOI: 10.3389/fphar.2024.1417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Objective To investigate the anti-inflammatory activity and mechanism of Baicalin derivative (Baicalin butyl ester, BE). Methods BE was synthesized and identified using UV-Vis spectroscopy, FT-IR spectroscopy, mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods. Its anti-inflammatory potential was explored by an in vitro inflammation model. Network pharmacology was employed to predict the anti-inflammatory targets of BE, construct protein-protein interaction (PPI) networks, and analysis topological features and KEGG pathway enrichment. Additionally, molecular docking was conducted to evaluate the binding affinity between BE and its core targets. qRT-PCR analysis was conducted to validate the network pharmacology results. The organizational efficiency was further evaluated through octanol-water partition coefficient and transmembrane activity analysis. Results UV-Vis, FT-IR, MS, and HPLC analyses confirmed the successfully synthesis of BE with a high purity of 93.75%. In vitro anti-inflammatory research showed that BE could more effectively suppress the expression of NO, COX-2, IL-6, IL-1β, and iNOS. Network pharmacology and in vitro experiments validated that BE's anti-inflammatory effects was mediated through the suppression of SRC, HSP90AA1, PIK3CA, JAK2, AKT1, and NF-κB via PI3K-AKT pathway. Molecular docking results revealed that the binding affinities of BA to the core targets were lower than those of BE. The Log p-value of BE (1.7) was markedly higher than that of BA (-0.5). Furthermore, BE accumulated in cells at a level approximately 200 times greater than BA. Conclusion BE exhibits stronger anti-inflammatory activity relative to BA, possibly attributed to its better lipid solubility and cellular penetration capabilities. The anti-inflammatory mechanism of BE may be mediated through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhangxun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lijuan Su
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Tan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fengzhi Hou
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tanjie He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Pan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuang Xu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shiqi Dong
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Kim HY, Kim JH. Chemical Characterization of the Precipitate Found in and Its Effect on Drug Release of the Scutellaria baicalensis-Coptis chinensis Extract. Chem Biodivers 2023; 20:e202301461. [PMID: 37961037 DOI: 10.1002/cbdv.202301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Precipitate generation is a challenging issue during the production of herbal decoction as it affects the stability and bioavailability of active compounds. Here we explored the composition of the natural precipitate formed from and its effect on drug release of Scutellaria baicalensis-Coptis chinensis paired extract (SCPE). Furthermore, the surface morphology of the SCPE precipitate was also investigated. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to chemical component analysis and field emission scanning electron microscope (FE-SEM) was performed to particle observation. Baicalin (BA), berberine (BBR) and starch-arginine-rich polymers were abundant in the SCPE precipitate. FE-SEM micrographs showed spheroidal shaped particles in the SCPE supernatant, while spherical and porous tissue-shaped particles in the SCPE precipitate. In vitro drug release of baicalin and berberine contained in the precipitate may increase as the polymer is removed. The presence of polymer-related interactions were confirmed by the greater increase in solubility of baicalin upon addition of arginine and polymer. This was also supported by the solubility decrease of the BA-BBR complex in polymer solution and the gelation of the BA-BBR complex in arginine solution. Our results provide a scientific basis for elucidating the pharmaceutical properties of the decoction of S. baicalensis-C. chinensis-based herbal medicine.
Collapse
Affiliation(s)
- Han-Young Kim
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea, 50612
| |
Collapse
|
7
|
Durmaz L, Karagecili H, Gulcin İ. Evaluation of Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase, and α-Glycosidase Inhibition Effects and Antioxidant Activity of Baicalin Hydrate. Life (Basel) 2023; 13:2136. [PMID: 38004276 PMCID: PMC10672269 DOI: 10.3390/life13112136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Baicalin is the foremost prevalent flavonoid found in Scutellaria baicalensis. It also frequently occurs in many multi-herbal preparations utilized in Eastern countries. The current research has assessed and compared the antioxidant, antidiabetic, anticholinergic, and antiglaucoma properties of baicalin hydrate. Baicalin hydrate was tested for its antioxidant capacity using a variety of techniques, including N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+) scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, potassium ferric cyanide reduction ability, and cupric ions (Cu2+) reducing activities. Also, for comparative purposes, reference antioxidants, such as butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were employed. Baicalin hydrate had an IC50 value of 13.40 μg/mL (r2: 0.9940) for DPPH radical scavenging, whereas BHA, BHT, Trolox, and α-Tocopherol had IC50 values of 10.10, 25.95, 7.059, and 11.31 μg/mL for DPPH• scavenging, respectively. These findings showed that baicalin hydrate had comparably close and similar DPPH• scavenging capability to BHA, α-tocopherol, and Trolox, but it performed better than BHT. Additionally, apart from these studies, baicalin hydrate was tested for its ability to inhibit a number of metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which have been linked to several serious illnesses, such as Alzheimer's disease (AD), glaucoma, and diabetes, where the Ki values of baicalin hydrate toward the aforementioned enzymes were 10.01 ± 2.86, 3.50 ± 0.68, 19.25 ± 1.79, and 26.98 ± 9.91 nM, respectively.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Türkiye;
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Türkiye;
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
8
|
Dmitrieva A, Kozlova O, Atuchin V, Milentieva I, Vesnina A, Ivanova S, Asyakina L, Prosekov A. Study of the Effect of Baicalin from Scutellaria baicalensis on the Gastrointestinal Tract Normoflora and Helicobacter pylori. Int J Mol Sci 2023; 24:11906. [PMID: 37569279 PMCID: PMC10419321 DOI: 10.3390/ijms241511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The antimicrobial properties of baicalin against H. pylori and several probiotic cultures were evaluated. Baicalin was isolated from a dry plant extract obtained by extraction with water at 70 °C. For isolation, extraction was carried out with n-butanol and purification on a chromatographic column. The antimicrobial potential was assessed by evaluating changes in the optical density of the bacterial suspension during cultivation; additionally, the disk diffusion method was used. During the study, the baicalin concentrations (0.25, 0.5, and 1 mg/mL) and the pH of the medium in the range of 1.5-8.0 were tested. The test objects were: suspensions of H. pylori, Lactobacillus casei, L. brevis, Bifidobacterium longum, and B. teenis. It was found that the greater the concentration of the substance in the solution, the greater the delay in the growth of the strain zone. Thus, the highest antimicrobial activity against H. pylori was observed at pH 1.5-2.0 and a baicalin concentration of 1.00 mg/mL. In relation to probiotic strains, a stimulating effect of baicalin (1.00 mg/mL) on the growth of L. casei biomass at pH 1.5-2.0 was observed. The results open up the prospects for the use of baicalin and probiotics for the treatment of diseases caused by H. pylori.
Collapse
Affiliation(s)
- Anastasia Dmitrieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Irina Milentieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Svetlana Ivanova
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
- Department of General Mathematics and Informatics, Kemerovo State University, 650043 Kemerovo, Russia
| | - Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| |
Collapse
|
9
|
Milentyeva I, Fedorova A, Larichev T, Altshuler O. Biologically active compounds in Scutellaria baicalensis L. callus extract: Phytochemical analysis and isolation. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-1-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Plant cells and tissue cultures are sources of secondary plant metabolites. Substances produced by callus cultures can expand the raw material base in pharmacy and food production. However, isolating biologically active substances from medicinal plants is a labor- and time-consuming process. As a result, new and efficient technological processes adapted for extraction from callus cultures are in high demand, and new algorithms of isolation and purification of biologically active substances remain a relevant task.
This research featured callus cultures of Scutellaria baicalensis. The procedures for phytochemical analysis and isolation of biologically active substances involved such physicochemical research methods as high-performance chromatography (HPLC), thin-layer chromatography (TLC), UV spectrometry, and IR spectrometry.
The high performance liquid chromatography confirmed the presence of flavonoids represented by baicalein (5,6,7-trioxyflavone), baicalin (baicalein 7-O-glucuronide), scutellarein (5,6,7,4-tetraoxyflavone), scutellarin (7-O-glucuronide scutellarein), vagonin, and oroxylin. The spectral analyses also detected skutebaicalin. The highest total content of diterpene belonged to the samples extracted with 70% ethanol at 70°C. The content of diterpene was 0.09 mg/cm3 in terms of betulin. The biologically active substances were isolated from the callus extracts of S. baicalensis with a recovery rate of ≥ 80%. The purification scheme made it possible to obtain highly-pure individual biologically active compounds: trans-cinnamic acid, baicalin, and oroxylin A had a purity of ≥ 95%; baicalein had a purity of ≥ 97%; scutellarin and luteolin reached ≥ 96%.
The new technological extraction method made it possible to obtain extracts from S. baicalensis callus cultures, which were tested for the component composition. The developed isolation algorithm and purification scheme yielded biologically active substances with a purification degree of ≥ 95%.
Collapse
|
10
|
Ibrahim A, Abdel Gaber SA, Fawzi Kabil M, Ahmed-Farid OA, Hirsch AK, El-Sherbiny IM, Nasr M. Baicalin lipid nanocapsules for treatment of glioma: Characterization, mechanistic cytotoxicity, and pharmacokinetic evaluation. Expert Opin Drug Deliv 2022; 19:1549-1560. [DOI: 10.1080/17425247.2022.2139370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alaa Ibrahim
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Sara A. Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | | | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Ibrahim M. El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6 of October City, 12578, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022; 11:foods11152189. [PMID: 35892774 PMCID: PMC9330871 DOI: 10.3390/foods11152189] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Plant polyphenols have attracted considerable attention because of their key roles in preventing many diseases, including high blood sugar, high cholesterol, and cancer. A variety of functional foods have been designed and developed with plant polyphenols as the main active ingredients. Polyphenols mainly come from vegetables and fruits and can generally be divided according to their structure into flavonoids, astragalus, phenolic acids, and lignans. Polyphenols are a group of plant-derived functional food ingredients with different molecular structures and various biological activities including antioxidant, anti-inflammatory, and anticancer properties. However, many polyphenolic compounds have low oral bioavailability, which limits the application of polyphenols in nutraceuticals. Fortunately, green bio-based nanocarriers are well suited for encapsulating, protecting, and delivering polyphenols, thereby improving their bioavailability. In this paper, the health benefits of plant polyphenols in the prevention of various diseases are summarized, with a review of the research progress into bio-based nanocarriers for the improvement of the oral bioavailability of polyphenols. Polyphenols have great potential for application as key formulations in health and nutrition products. In the future, the development of food-grade delivery carriers for the encapsulation and delivery of polyphenolic compounds could well solve the limitations of poor water solubility and low bioavailability of polyphenols for practical applications.
Collapse
|
12
|
Ganguly R, Gupta A, Pandey AK. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J Gastroenterol 2022; 28:3047-3062. [PMID: 36051349 PMCID: PMC9331529 DOI: 10.3748/wjg.v28.i26.3047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, which is extensively used in traditional Chinese medicine. A literature survey demonstrated the broad spectrum of health benefits of baicalin such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatoprotective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to its metabolite baicalein by the action of gut microbiota, which is further reconverted to baicalin via phase 2 metabolism in the liver. Many studies have suggested that baicalin exhibits therapeutic potential against several types of hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and colorectal cancer. During in vitro and in vivo examinations, it has been observed that baicalin showed a protective role against liver and gut-associated abnormalities by modifying several signaling pathways such as nuclear factor-kappa B, transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase pathways. Furthermore, baicalin also regulates the expression of fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, due to its low solubility and poor bioavailability, widespread therapeutic applications of baicalin still remain a challenge. This review summarized the hepatic and gastrointestinal protective attributes of baicalin with an emphasis on the molecular mechanisms that regulate the interaction of baicalin with the gut microbiota.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|