1
|
Meisel P, Völzke H, Kocher T. Periodontal Probing Depth Trajectory in 10 Years of Follow-Up as Associated With Tooth Loss. J Clin Periodontol 2025; 52:859-867. [PMID: 39744806 DOI: 10.1111/jcpe.14117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 05/17/2025]
Abstract
AIM To elucidate whether ranked probing depth (PD) data translate into ranked PD outcomes after 10 years of follow-up and the associated tooth loss. MATERIALS AND METHODS From the Study of Health in Pomerania (SHIP-START), all participants were retrospectively included with complete PD measurements in both baseline and 10-year follow-up, comprising 1887 participants. The trajectory of percentile-based quintiles of mean PD measurements was followed. RESULTS Quintiles of mean PD at baseline were, in a dose dependent manner, associated with the number of teeth at baseline, number of teeth after 10 years and involved risk of tooth loss. The trajectory of membership to individual PD quintiles indicated that the majority of participants remained in or near their baseline quintile after reaching the 10-year end analysis. Periodontal risk factors assessed at baseline continued to affect PD outcomes at follow-up. Two categories of tooth loss were identified: 1-2 teeth lost versus ≥ 3 teeth and differentiated by baseline PD. CONCLUSION PD severity ranked within this population translates, in a dose-dependent manner, to follow-up tooth loss even after many years. This underlines the prospective importance of pocket probing in the dental practice. Ranked PD offers a simple measure to identify patients at high risk of tooth loss.
Collapse
Affiliation(s)
- Peter Meisel
- Dental Clinics, Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Dental Clinics, Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Farina R, Simonelli A, Trombelli L, Ettmayer JB, Schmid JL, Ramseier CA. Emerging Applications of Digital Technologies for Periodontal Screening, Diagnosis and Prognosis in the Dental Setting. J Clin Periodontol 2025. [PMID: 40107262 DOI: 10.1111/jcpe.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
AIM To comprehensively review digital technologies (including artificial intelligence, AI) for periodontal screening, diagnosis and prognosis in the dental setting, focusing on accuracy metrics. MATERIALS AND METHODS Two separate literature searches were conducted for periodontal screening and diagnosis (part I, scoping review) and prognosis (part II, systematic approach). PubMed, Scopus and Embase databases were searched. RESULTS In part I, 40 studies evaluated AI and advanced imaging on different substrata. The combination of AI with 2D radiographs was the most frequently investigated and demonstrated a high level of periodontitis detection and stage definition. In part II, eight studies, identified as having a high risk of bias, tested supervised machine learning models using 6-74 predictors. The models demonstrated variable predictive accuracy, often outperforming traditional risk assessment tools and classical statistical models in the few studies evaluating such comparisons. CONCLUSIONS AI and advanced imaging techniques are promising for periodontal screening, diagnosis and prognosis in the dental setting, although the evidence remains inconsistent and inconclusive. In addition, AI-driven analysis of 2D radiographs (for diagnosis and staging of periodontitis), neural networks and the aggregation of multiple algorithms (for predicting tooth-related outcomes) appear to be the most promising approaches entering clinical application.
Collapse
Affiliation(s)
- Roberto Farina
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (AUSL), Ferrara, Italy
| | - Anna Simonelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (AUSL), Ferrara, Italy
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, Ferrara, Italy
- Operative Unit of Dentistry, Azienda Unità Sanitaria Locale (AUSL), Ferrara, Italy
| | - Johanna B Ettmayer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan L Schmid
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christoph A Ramseier
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Feher B, Tussie C, Giannobile WV. Applied artificial intelligence in dentistry: emerging data modalities and modeling approaches. Front Artif Intell 2024; 7:1427517. [PMID: 39109324 PMCID: PMC11300434 DOI: 10.3389/frai.2024.1427517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 12/01/2024] Open
Abstract
Artificial intelligence (AI) is increasingly applied across all disciplines of medicine, including dentistry. Oral health research is experiencing a rapidly increasing use of machine learning (ML), the branch of AI that identifies inherent patterns in data similarly to how humans learn. In contemporary clinical dentistry, ML supports computer-aided diagnostics, risk stratification, individual risk prediction, and decision support to ultimately improve clinical oral health care efficiency, outcomes, and reduce disparities. Further, ML is progressively used in dental and oral health research, from basic and translational science to clinical investigations. With an ML perspective, this review provides a comprehensive overview of how dental medicine leverages AI for diagnostic, prognostic, and generative tasks. The spectrum of available data modalities in dentistry and their compatibility with various methods of applied AI are presented. Finally, current challenges and limitations as well as future possibilities and considerations for AI application in dental medicine are summarized.
Collapse
Affiliation(s)
- Balazs Feher
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- ITU/WHO/WIPO Global Initiative on Artificial Intelligence for Health, Geneva, Switzerland
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Camila Tussie
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V. Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Chow DY, Tay JRH, Nascimento GG. Systematic Review of Prognosis Models in Predicting Tooth Loss in Periodontitis. J Dent Res 2024; 103:596-604. [PMID: 38726948 DOI: 10.1177/00220345241237448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
This study reviews and appraises the methodological and reporting quality of prediction models for tooth loss in periodontitis patients, including the use of regression and machine learning models. Studies involving prediction modeling for tooth loss in periodontitis patients were screened. A search was performed in MEDLINE via PubMed, Embase, and CENTRAL up to 12 February 2022, with citation chasing. Studies exploring model development or external validation studies for models assessing tooth loss in periodontitis patients for clinical use at any time point, with all prediction horizons in English, were considered. Studies were excluded if models were not developed for use in periodontitis patients, were not developed or validated on any data set, predicted outcomes other than tooth loss, or were prognostic factor studies. The CHARMS checklist was used for data extraction, TRIPOD to assess reporting quality, and PROBAST to assess the risk of bias. In total, 4,661 records were screened, and 45 studies were included. Only 26 studies reported any kind of performance measure. The median C-statistic reported was 0.671 (range, 0.57-0.97). All studies were at a high risk of bias due to inappropriate handling of missing data (96%), inappropriate evaluation of model performance (92%), and lack of accounting for model overfitting in evaluating model performance (68%). Many models predicting tooth loss in periodontitis are available, but studies evaluating these models are at a high risk of bias. Model performance measures are likely to be overly optimistic and might not be replicated in clinical use. While this review is unable to recommend any model for clinical practice, it has collated the existing models and their model performance at external validation and their associated sample sizes, which would be helpful to identify promising models for future external validation studies.
Collapse
Affiliation(s)
- D Y Chow
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - J R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - G G Nascimento
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
- ORH ACP, Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
5
|
Lee CT, Zhang K, Li W, Tang K, Ling Y, Walji MF, Jiang X. Identifying predictors of the tooth loss phenotype in a large periodontitis patient cohort using a machine learning approach. J Dent 2024; 144:104921. [PMID: 38437976 DOI: 10.1016/j.jdent.2024.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVES This study aimed to identify predictors associated with the tooth loss phenotype in a large periodontitis patient cohort in the university setting. METHODS Information on periodontitis patients and nineteen factors identified at the initial visit was extracted from electronic health records. The primary outcome is tooth loss phenotype (presence or absence of tooth loss). Prediction models were built on significant factors (single or combinatory) selected by the RuleFit algorithm, and these factors were further adopted by regression models. Model performance was evaluated by Area Under the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC). Associations between predictors and the tooth loss phenotype were also evaluated by classical statistical approaches to validate the performance of machine learning models. RESULTS In total, 7840 patients were included. The machine learning model predicting the tooth loss phenotype achieved AUROC of 0.71 and AUPRC of 0.66. Age, periodontal diagnosis, number of missing teeth at baseline, furcation involvement, and tooth mobility were associated with the tooth loss phenotype in both machine learning and classical statistical models. CONCLUSIONS The rule-based machine learning approach improves model explainability compared to classical statistical methods. However, the model's generalizability needs to be further validated by external datasets. CLINICAL SIGNIFICANCE Predictors identified by the current machine learning approach using the RuleFit algorithm had clinically relevant thresholds in predicting the tooth loss phenotype in a large and diverse periodontitis patient cohort. The results of this study will assist clinicians in performing risk assessment for periodontitis at the initial visit.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054, USA
| | - Kai Zhang
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, 7000 Fannin St, Houston, Texas 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, the University of Texas McGovern Medical School at Houston, 6431 Fannin St, Houston, Texas, USA; Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, Houston, Texas 77030, USA
| | - Kaichen Tang
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, 7000 Fannin St, Houston, Texas 77030, USA
| | - Yaobin Ling
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, 7000 Fannin St, Houston, Texas 77030, USA
| | - Muhammad F Walji
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, 7000 Fannin St, Houston, Texas 77030, USA; Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, 7000 Fannin St., Houston, Texas 77030, USA
| | - Xiaoqian Jiang
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, 7000 Fannin St, Houston, Texas 77030, USA.
| |
Collapse
|
6
|
Lee CT, Zhang K, Li W, Tang K, Ling Y, Walji MF, Jiang X. Identifying predictors of tooth loss using a rule-based machine learning approach: A retrospective study at university-setting clinics. J Periodontol 2023; 94:1231-1242. [PMID: 37063053 DOI: 10.1002/jper.23-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND This study aimed to identify predictors associated with tooth loss in a large periodontitis patient cohort in the university setting using the machine learning approach. METHODS Information on periodontitis patients and 18 factors identified at the initial visit was extracted from electronic health records. A two-step machine learning pipeline was proposed to develop the tooth loss prediction model. The primary outcome is tooth loss count. The prediction model was built on significant factors (single or combination) selected by the RuleFit algorithm, and these factors were further adopted by the count regression model. Model performance was evaluated by root-mean-squared error (RMSE). Associations between predictors and tooth loss were also assessed by a classical statistical approach to validate the performance of the machine learning model. RESULTS In total, 7840 patients were included. The machine learning model predicting tooth loss count achieved RMSE of 2.71. Age, smoking, frequency of brushing, frequency of flossing, periodontal diagnosis, bleeding on probing percentage, number of missing teeth at baseline, and tooth mobility were associated with tooth loss in both machine learning and classical statistical models. CONCLUSION The two-step machine learning pipeline is feasible to predict tooth loss in periodontitis patients. Compared to classical statistical methods, this rule-based machine learning approach improves model explainability. However, the model's generalizability needs to be further validated by external datasets.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Kai Zhang
- The University of Texas Health Science Center at Houston, McWilliams School of Biomedical Informatics, Houston, Texas, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kaichen Tang
- The University of Texas Health Science Center at Houston, McWilliams School of Biomedical Informatics, Houston, Texas, USA
| | - Yaobin Ling
- The University of Texas Health Science Center at Houston, McWilliams School of Biomedical Informatics, Houston, Texas, USA
| | - Muhammad F Walji
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Xiaoqian Jiang
- The University of Texas Health Science Center at Houston, McWilliams School of Biomedical Informatics, Houston, Texas, USA
| |
Collapse
|
7
|
Mohammad-Rahimi H, Motamedian SR, Pirayesh Z, Haiat A, Zahedrozegar S, Mahmoudinia E, Rohban MH, Krois J, Lee JH, Schwendicke F. Deep learning in periodontology and oral implantology: A scoping review. J Periodontal Res 2022; 57:942-951. [PMID: 35856183 DOI: 10.1111/jre.13037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022]
Abstract
Deep learning (DL) has been employed for a wide range of tasks in dentistry. We aimed to systematically review studies employing DL for periodontal and implantological purposes. A systematic electronic search was conducted on four databases (Medline via PubMed, Google Scholar, Scopus, and Embase) and a repository (ArXiv) for publications after 2010, without any limitation on language. In the present review, we included studies that reported deep learning models' performance on periodontal or oral implantological tasks. Given the heterogeneities in the included studies, no meta-analysis was performed. The risk of bias was assessed using the QUADAS-2 tool. We included 47 studies: focusing on imaging data (n = 20) and non-imaging data in periodontology (n = 12), or dental implantology (n = 15). The detection of periodontitis and gingivitis or periodontal bone loss, the classification of dental implant systems, or the prediction of treatment outcomes in periodontology and implantology were major use cases. The performance of the models was generally high. However, it varied given the employed methods (which includes various types of convolutional neural networks (CNN) and multi-layered perceptron (MLP)), the variety in specific modeling tasks, as well as the chosen and reported outcomes, outcome measures and outcome level. Only a few studies (n = 7) showed a low risk of bias across all assessed domains. A growing number of studies evaluated DL for periodontal or implantological objectives. Heterogeneity in study design, poor reporting and a high risk of bias severely limit the comparability of studies and the robustness of the overall evidence.
Collapse
Affiliation(s)
- Hossein Mohammad-Rahimi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Pirayesh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Anahita Haiat
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
| | - Samira Zahedrozegar
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Mahmoudinia
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Joachim Krois
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jae-Hong Lee
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, South Korea
| | - Falk Schwendicke
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group AI on Health, Berlin, Germany
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Precision dentistry—what it is, where it fails (yet), and how to get there. Clin Oral Investig 2022; 26:3395-3403. [PMID: 35284954 PMCID: PMC8918420 DOI: 10.1007/s00784-022-04420-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022]
Abstract
Objectives Dentistry is stuck between the one-size-fits-all approach towards diagnostics and therapy employed for a century and the era of stratified medicine. The present review presents the concept of precision dentistry, i.e., the next step beyond stratification into risk groups, and lays out where we stand, but also what challenges we have ahead for precision dentistry to come true. Material and methods Narrative literature review. Results Current approaches for enabling more precise diagnostics and therapies focus on stratification of individuals using clinical or social risk factors or indicators. Most research in dentistry does not focus on predictions — the key for precision dentistry — but on associations. We critically discuss why both approaches (focus on a limited number of risk factors or indicators and on associations) are insufficient and elaborate on what we think may allow to overcome the status quo. Conclusions Leveraging more diverse and broad data stemming from routine or unusual sources via advanced data analytics and testing the resulting prediction models rigorously may allow further steps towards more precise oral and dental care. Clinical significance Precision dentistry refers to tailoring diagnostics and therapy to an individual; it builds on modelling, prediction making and rigorous testing. Most studies in the dental domain focus on showing associations, and do not attempt to make any predictions. Moreover, the datasets used are narrow and usually collected purposively following a clinical reasoning. Opening routine data silos and involving uncommon data sources to harvest broad data and leverage them using advanced analytics could facilitate precision dentistry.
Collapse
|
9
|
Andörfer L, Holtfreter B, Weiss S, Matthes R, Pitchika V, Schmidt CO, Samietz S, Kastenmüller G, Nauck M, Völker U, Völzke H, Csonka LN, Suhre K, Pietzner M, Kocher T. Salivary metabolites associated with a 5-year tooth loss identified in a population-based setting. BMC Med 2021; 19:161. [PMID: 34256740 PMCID: PMC8278731 DOI: 10.1186/s12916-021-02035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Periodontitis is among the most common chronic diseases worldwide, and it is one of the main reasons for tooth loss. Comprehensive profiling of the metabolite content of the saliva can enable the identification of novel pathways associated with periodontitis and highlight non-invasive markers to facilitate time and cost-effective screening efforts for the presence of periodontitis and the prediction of tooth loss. METHODS We first investigated cross-sectional associations of 13 oral health variables with saliva levels of 562 metabolites, measured by untargeted mass spectrometry among a sub-sample (n = 938) of the Study of Health in Pomerania (SHIP-2) using linear regression models adjusting for common confounders. We took forward any candidate metabolite associated with at least two oral variables, to test for an association with a 5-year tooth loss over and above baseline oral health status using negative binomial regression models. RESULTS We identified 84 saliva metabolites that were associated with at least one oral variable cross-sectionally, for a subset of which we observed robust replication in an independent study. Out of 34 metabolites associated with more than two oral variables, baseline saliva levels of nine metabolites were positively associated with a 5-year tooth loss. Across all analyses, the metabolites 2-pyrrolidineacetic acid and butyrylputrescine were the most consistent candidate metabolites, likely reflecting oral dysbiosis. Other candidate metabolites likely reflected tissue destruction and cell proliferation. CONCLUSIONS Untargeted metabolic profiling of saliva replicated metabolic signatures of periodontal status and revealed novel metabolites associated with periodontitis and future tooth loss.
Collapse
Affiliation(s)
- Leonie Andörfer
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Rutger Matthes
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Vinay Pitchika
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, SHIP/Clinical Epidemiology Research, University Medicine Greifswald, Greifswald, Germany
| | - Stefanie Samietz
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, Greifswald, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, SHIP/Clinical Epidemiology Research, University Medicine Greifswald, Greifswald, Germany
| | - Laszlo N Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, USA
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- Computational Medicine, Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 42, 17475, Greifswald, Germany.
| |
Collapse
|