1
|
(Ogi) Suzuki K, Okamoto T, Tamai K, Tabata Y, Hatano E. Enhancement of tracheal cartilage regeneration by local controlled release of stromal cell-derived factor 1α with gelatin hydrogels and systemic administration of high-mobility group box 1 peptide. Regen Ther 2024; 26:415-424. [PMID: 39070123 PMCID: PMC11282968 DOI: 10.1016/j.reth.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction This present study evaluated the effect of combination therapy with stromal cell-derived factor 1α (SDF-1α) and high-mobility group box 1 (HMGB1) peptide on the regeneration of tracheal injury in a rat model. Methods To improve this effect, SDF-1α was incorporated into a gelatin hydrogel, which was then applied to the damaged tracheal cartilage of rats for local release. Furthermore, HMGB1 peptide was repeatedly administered intravenously. Regeneration of damaged tracheal cartilage was evaluated in terms of cell recruitment. Results Mesenchymal stem cells (MSC) with C-X-C motif chemokine receptor 4 (CXCR4) were mobilized more into the injured area, and consequently the fastest tracheal cartilage regeneration was observed in the combination therapy group eight weeks after injury. Conclusions The present study demonstrated that combination therapy with gelatin hydrogel incorporating SDF-1α and HMGB1 peptide injected intravenously can enhance the recruitment of CXCR4-positive MSC, promoting the regeneration of damaged tracheal cartilage.
Collapse
Affiliation(s)
- Kumiko (Ogi) Suzuki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuya Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release 2022; 346:328-354. [PMID: 35452764 DOI: 10.1016/j.jconrel.2022.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Dendrimers have been comprehensively used for cargo delivery, nucleic acid delivery (genes, miRNA/siRNAs), delivery of macromolecules, and other various biomedical applications. Dendrimers are highly versatile in function and can be engineered as multifunctional biomacromolecules by modifying the surface for fulfilling different applications. Dendrimers are being used for crosslinking of existing synthetic and natural polymeric scaffolds to regulate their binding efficiency, stiffness, biocompatibility, transfection, and many other properties to mimic the in vivo extracellular matrix in tissue engineering and regenerative medicine (TERM). Dendritic inter-cellular linkers can enhance the linkages between cells and result in scaffold-independent tissue constructs. Effectively engineered dendrimers are the ideal molecules for delivering bioactive molecules such as cytokines, chemokines, growth factors, etc., and other metabolites for efficaciously regulating cell behavior. Dendrimeric nanostructures have shown tremendous results in various TERM fields like stem cells survival, osteogenesis, increased crosslinking for eye and corneal repair, and proliferation in cartilage. This review highlights the role and various aspects of dendritic polymers for TERM in general and with respect to specific tissues. This review also covers novel explorations and insights into the use of dendrimers in TERM, focusing on the developments in the past decade and perspective of the future.
Collapse
Affiliation(s)
- Aazam Shaikh
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
3
|
Altankhishig B, Polan MAA, Qiu Y, Hasan MR, Saito T. Dentin Phosphophoryn-Derived Peptide Promotes Odontoblast Differentiation In Vitro and Dentin Regeneration In Vivo. MATERIALS 2021; 14:ma14040874. [PMID: 33673176 PMCID: PMC7918442 DOI: 10.3390/ma14040874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The purpose of the present study was to investigate the effect of a peptide (i.e., SESDNNSSSRGDASYNSDES) derived from dentin phosphophoryn (DPP) with arginine-glycine-aspartic acid (RGD) motifs on odontoblast differentiation in vitro and to compare it with calcium hydroxide—a material used conventionally for vital pulp therapy—in terms of reparative dentin formation and pulp inflammation in vivo. Alkaline phosphatase activity assay and alizarin red S staining were performed to evaluate odontoblast-differentiation in cell culturing experiments. To observe the reparative dentin formation and pulp inflammation animal experiment was performed and examined by histological methods. The difference between the experimental group and the control group was analyzed statistically using a one-way ANOVA test. The results revealed that the DPP-derived RGD-containing peptide triggered odontoblast differentiation and mineralization in vitro. In rats undergoing direct pulp capping, the DPP-derived RGD-containing peptide was found to induce intensively formed reparative dentin with high compactness at week 4. On histological and morphometrical examinations, a smaller degree of pulpitis was observed in the specimens treated with the peptide than in those treated with calcium hydroxide. This study suggests that the DPP-derived RGD-containing peptide is a biocompatible, biodegradable and bioactive material for dentin regeneration.
Collapse
Affiliation(s)
- Bayarchimeg Altankhishig
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
| | - Mohammad Ali Akbor Polan
- Department of Children Preventive and Community Dentistry, Dhaka Dental College, Dhaka 1206, Bangladesh;
| | - Youjing Qiu
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
| | - Md Riasat Hasan
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
- Correspondence: (M.R.H.); (T.S.)
| | - Takashi Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (B.A.); (Y.Q.)
- Correspondence: (M.R.H.); (T.S.)
| |
Collapse
|
4
|
Montesanto S, Brucato V, La Carrubba V. Evaluation of mechanical and morphologic features of PLLA membranes as supports for perfusion cells culture systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:841-9. [PMID: 27612778 DOI: 10.1016/j.msec.2016.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/12/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
Abstract
Porous biodegradable PLLA membranes, which can be used as supports for perfusion cell culture systems were designed, developed and characterized. PLLA membranes were prepared via diffusion induced phase separation (DIPS). A glass slab was coated with a binary PLLA-dioxane solution (8wt.% PLLA) via dip coating, then pool immersed in two subsequent coagulation baths, and finally dried in a humidity-controlled environment. Surface and mechanical properties were evaluated by measuring pore size, porosity via scanning electron microscopy, storage modulus, loss modulus and loss angle by using a dynamic mechanical analysis (DMA). Cell adhesion assays on different membrane surfaces were also performed by using a standard count method. Results provide new insights into the foaming methods for producing polymeric membranes and supply indications on how to optimise the fabrication parameters to design membranes for tissue cultures and regeneration.
Collapse
Affiliation(s)
- S Montesanto
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy.
| | - V Brucato
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy
| | - V La Carrubba
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia, 20, 90128 Palermo, Italy
| |
Collapse
|
5
|
Importance of controlled delivery systems for regenerative therapeutics. Ther Deliv 2014; 5:1053-5. [DOI: 10.4155/tde.14.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Nagy MM, Tawfik HE, Hashem AAR, Abu-Seida AM. Regenerative potential of immature permanent teeth with necrotic pulps after different regenerative protocols. J Endod 2014; 40:192-198. [PMID: 24461403 DOI: 10.1016/j.joen.2013.10.027] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Regenerative endodontics is a promising alternative treatment for immature teeth with necrotic pulps. The present study was performed to assess the regenerative potential of young permanent immature teeth with necrotic pulp after the following treatment protocols: (1) a mineral trioxide aggregate (MTA) apical plug, (2) the regenerative endodontic protocol (blood clot scaffold), and (3) the regenerative endodontic protocol with a blood clot and an injectable scaffold impregnated with basic fibroblast growth factor. METHODS Immature necrotic permanent maxillary central incisors (n = 36) of patients 9-13 years old were divided into 3 groups according to the treatment protocol: the MTA group (MTA apical plug), the REG group (regenerative endodontic protocol [blood clot]), and the FGF group (regenerative endodontic protocol [blood clot + injectable scaffold]). Follow-up was done up to 18 months. Standardized radiographs were digitally evaluated for an increase in root length and thickness, a decrease in the apical diameter, and a change in periapical bone density. RESULTS After a follow-up period of 18 months, most of the cases showed radiographic evidence of periapical healing. Groups 2 and 3 showed a progressive increase in root length and width and a decrease in apical diameter. CONCLUSIONS The regenerative endodontic procedure allowed the continued development of roots in teeth with necrotic pulps. The use of artificial hydrogel scaffold and basic fibroblast growth factor was not essential for repair.
Collapse
Affiliation(s)
- Mohamed M Nagy
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Hosam E Tawfik
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Ahmed Abdel Rahman Hashem
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt; Department of Endodontics, Faculty of Dentistry, Future University, Cairo, Egypt.
| | - Ashraf M Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Tawfik H, Abu-Seida AM, Hashem AA, Nagy MM. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps. Int Endod J 2013; 46:910-922. [PMID: 23480261 DOI: 10.1111/iej.12079] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 02/02/2013] [Indexed: 02/05/2023]
Abstract
AIM To assess the regenerative potential of immature teeth with necrotic pulps following revascularization procedure in dogs. METHODOLOGY Necrotic pulps and periapical pathosis were created by infecting 108 immature teeth, with 216 root canals in nine mongrel dogs. Teeth were divided into three equal groups according to the evaluation period. Each group was further subdivided into six subgroups according to the treatment protocol including MTA apical plug, revascularization protocol, revascularization enhanced with injectable scaffold, MTA over empty canal. All root canals were disinfected with a triple antibiotic paste prior to revascularization with the exception of control subgroups. After disinfection, the root length, thickness and apical diameter were measured from radiographs. Histological evaluation was used to assess the inflammatory reaction, soft and hard tissue formation. RESULTS In the absence of revascularization, the length and thickness of the root canals did not change over time. The injectable scaffold and growth factor was no more effective than a revascularization procedure to promote tooth development following root canal revascularization. The tissues formed in the root canals resembled periodontal tissues. CONCLUSION The revascularization procedure allowed the continued development of roots in teeth with necrotic pulps.
Collapse
Affiliation(s)
- H Tawfik
- Endodontic Department, Faculty of Dentistry, Ainshams University, Cairo, Egypt
| | | | | | | |
Collapse
|
8
|
Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:130-9. [PMID: 24268242 DOI: 10.1016/j.msec.2013.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/29/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
Abstract
The aim of this research was to investigate a tough polymer to develop 3D scaffolds and 2D films for tissue engineering applications, in particular to repair urethral strictures or defects. The polymer tested was a graft copolymer of polylactic acid (PLA) synthesized with the rationale to improve the toughness of the related PLA homopolymer. The LMP-3055 graft copolymer (in bulk) demonstrated to have negligible cytotoxicity (bioavailability >85%, MTT test). Moreover, the LMP-3055 sterilized through gamma rays resulted to be cytocompatible and non-toxic, and it has a positive effect on cell biofunctionality, promoting the cell growth. 3D scaffolds and 2D film were prepared using different LMP-3055 polymer concentrations (7.5, 10, 12.5 and 15%, w/v), and the effect of polymer concentration on pore size, porosity and interconnectivity of the 3D scaffolds and 2D film was investigated. 3D scaffolds got better results for fulfilling structural and biofunctional requirements: porosity, pore size and interconnectivity, cell attachment and proliferation. 3D scaffolds obtained with 10 and 12.5% polymer solutions (3D-2 and 3D-3, respectively) were identified as the most suitable construct for the cell attachment and proliferation presenting pore size ranged between 100 and 400μm, high porosity (77-78%) and well interconnected pores. In vitro cell studies demonstrated that all the selected scaffolds were able to support the cell proliferation, the cell attachment and growth resulting to their dependency on the polymer concentration and structural features. The degradation test revealed that the degradation of polymer matrix (ΔMw) and water uptake of 3D scaffolds exceed those of 2D film and raw polymer (used as control reference), while the mass loss of samples (3D scaffold and 2D film) resulted to be controlled, they showed good stability and capacity to maintain the physical integrity during the incubation time.
Collapse
Affiliation(s)
- R Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; Center for Tissue Engineering (CIT), University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenetic protein-2 from hydrogels on bone regeneration. Biomaterials 2011; 32:2797-811. [DOI: 10.1016/j.biomaterials.2010.12.052] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 12/29/2010] [Indexed: 01/06/2023]
|
10
|
Kishimoto Y, Hirano S, Tateya I, Kanemaru SI, Ito J. Temporal changes in vocal functions of human scarred vocal folds after cordectomy. Laryngoscope 2010; 120:1597-601. [PMID: 20641077 DOI: 10.1002/lary.21016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS The maturation process of scarred vocal folds has previously been investigated using animal models. However, in human models the features of scarred vocal folds have rarely been described, and the process by which the scar changes with time is not well known. The present study aimed to investigate the maturation process of human vocal folds scarred by cordectomy in terms of vibratory and aerodynamic functions. STUDY DESIGN Prospective case series. METHODS Eight patients with early glottic carcinoma and two patients with leukoplakia of the vocal fold underwent endoscopic cordectomy at Kyoto University Hospital between 2006 and 2008. The temporal changes in their vocal functions were evaluated using acoustic and aerodynamic analyses and videostroboscopic examination. RESULTS Normalized mucosal wave amplitude, mean flow rate, and the amplitude perturbation quotient appear to stabilize about 6 months after the procedure. Although there were individual variations in the changes in normalized glottal gap and maximum phonation time, it appears to take at least 6 months to reach plateau. The other parameters-pitch perturbation quotient and noise to harmonic ratio-varied by individual, and thus it was difficult to identify commonalities in the healing process. CONCLUSIONS Some individual variation was observed in the temporal changes of vocal function of scarred vocal folds after cordectomy. However, in terms of vibratory and aerodynamic functions, this study suggests that it takes at least 6 months for maturation of vocal fold scarring.
Collapse
Affiliation(s)
- Yo Kishimoto
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
11
|
Mullen LM, Best SM, Brooks RA, Ghose S, Gwynne JH, Wardale J, Rushton N, Cameron RE. Binding and release characteristics of insulin-like growth factor-1 from a collagen-glycosaminoglycan scaffold. Tissue Eng Part C Methods 2010; 16:1439-48. [PMID: 20388039 DOI: 10.1089/ten.tec.2009.0806] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue engineering is a promising technique for cartilage repair, but to optimize novel scaffolds before clinical trials, it is necessary to determine their characteristics for binding and release of growth factors. Toward this goal, a novel, porous collagen-glycosaminoglycan scaffold was loaded with a range of concentrations of insulin-like growth factor-1 (IGF-1) to evaluate its potential as a controlled delivery device. The kinetics of IGF-1 adsorption and release from the scaffold was demonstrated using radiolabeled IGF-1. Adsorption was rapid, and was approximately proportional to the loading concentration. Ionic bonding contributed to this interaction. IGF-1 release was studied over 14 days to compare the release profiles from different loading groups. Two distinct phases occurred: first, a burst release of up to 44% was noted within the first 24 h; then, a slow, sustained release (13%-16%) was observed from day 1 to 14. When the burst release was subtracted, the relative percentage of remaining IGF-1 released was similar for all loading groups and broadly followed t(½) kinetics until approximately day 6. Scaffold cross-linking using dehydrothermal treatment did not affect IGF-1 adsorption or release. Bioactivity of released IGF-1 was confirmed by seeding scaffolds (preadsorbed with unlabeled IGF-1) with human osteoarthritic chondrocytes and demonstrating increased proteoglycan production in vitro.
Collapse
Affiliation(s)
- Leanne M Mullen
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010; 31:6279-308. [PMID: 20493521 DOI: 10.1016/j.biomaterials.2010.04.053] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/22/2010] [Indexed: 02/06/2023]
Abstract
Inspired by physiological events that accompany the "wound healing cascade", the concept of developing a tissue either in vitro or in vivo has led to the integration of a wide variety of growth factors (GFs) in tissue engineering strategies in an effort to mimic the natural microenvironments of tissue formation and repair. Localised delivery of exogenous GFs is believed to be therapeutically effective for replication of cellular components involved in tissue development and the healing process, thus making them important factors for tissue regeneration. However, any treatment aiming to mimic the critical aspects of the natural biological process should not be limited to the provision of a single GF, but rather should release multiple therapeutic agents at an optimised ratio, each at a physiological dose, in a specific spatiotemporal pattern. Despite several obstacles, delivery of more than one GF at rates mimicking an in vivo situation has promising potential for the clinical management of severely diseased tissues. This article summarises the concept of and early approaches toward the delivery of dual or multiple GFs, as well as current efforts to develop sophisticated delivery platforms for this ambitious purpose, with an emphasis on the application of biomaterials-based deployment technologies that allow for controlled spatial presentation and release kinetics of key biological cues. Additionally, the use of platelet-rich plasma or gene therapy is addressed as alternative, easy, cost-effective and controllable strategies for the release of high concentrations of multiple endogenous GFs, followed by an update of the current progress and future directions of research utilising release technologies in tissue engineering and regenerative medicine.
Collapse
|
13
|
Stancu IC. Gelatin hydrogels with PAMAM nanostructured surface and high density surface-localized amino groups. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2010.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Kimura Y, Tabata Y. Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:37-51. [PMID: 20040152 DOI: 10.1163/156856209x410193] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Controlled release of a chemokine, stromal-cell-derived factor-1 (SDF-1), could be achieved with gelatin hydrogels of release carrier. Gelatin was chemically derivatized to give it different electric charge and hydrophobicity. Among the derivatives, succinylated gelatin (Succ) of an anionic charge was the most suitable for preparation of the hydrogel in terms of SDF-1 release. The time profile of SDF-1 release from the hydrogel of succinylated gelatin could be controlled by changing the water content of hydrogel which could be modified by changing the conditions of hydrogel preparation. When evaluated after the subcutaneous implantation of Succ hydrogels incorporating SDF-1 or injection of SDF-1 solution, significantly stronger angiogenesis by the hydrogel was observed. The hydrogel implantation also enhanced the mRNA level of SDF-1 receptor at the site implanted. It is possible that the gelatin hydrogel enabled SDF-1 to be released locally, resulting in an enhanced angiogenesis at the site implanted.
Collapse
Affiliation(s)
- Yu Kimura
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 6068507, Japan
| | | |
Collapse
|