1
|
Hindle J, Williams A, Kim Y, Kim D, Patil K, Khatkar P, Osgood Q, Nelson C, Routenberg DA, Howard M, Liotta LA, Kashanchi F, Branscome H. hTERT-Immortalized Mesenchymal Stem Cell-Derived Extracellular Vesicles: Large-Scale Manufacturing, Cargo Profiling, and Functional Effects in Retinal Epithelial Cells. Cells 2024; 13:861. [PMID: 38786083 PMCID: PMC11120263 DOI: 10.3390/cells13100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.
Collapse
Affiliation(s)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Kajal Patil
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Collin Nelson
- Meso Scale Diagnostics, L.L.C., Rockville, MD 20850, USA (D.A.R.)
| | | | - Marissa Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Heather Branscome
- ATCC, Manassas, VA 20110, USA
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| |
Collapse
|
2
|
Kang L, Kohen M, McCarthy I, Hammelef E, Kim HS, Bapputty R, Gubitosi-Klug R, Orge FH, Kern T, Medof ME. Critical Role of CD55 in Controlling Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1142-1149. [PMID: 38372645 PMCID: PMC12005244 DOI: 10.4049/jimmunol.2300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
How reparative processes are coordinated following injury is incompletely understood. In recent studies, we showed that autocrine C3a and C5a receptor (C3ar1 and C5ar1) G protein-coupled receptor signaling plays an obligate role in vascular endothelial growth factor receptor 2 growth signaling in vascular endothelial cells. We documented the same interconnection for platelet-derived growth factor receptor growth signaling in smooth muscle cells, epidermal growth factor receptor growth signaling in epidermal cells, and fibroblast growth factor receptor signaling in fibroblasts, indicative of a generalized cell growth regulatory mechanism. In this study, we examined one physiological consequence of this signaling circuit. We found that disabling CD55 (also known as decay accelerating factor), which lifts restraint on autocrine C3ar1/C5ar1 signaling, concomitantly augments the growth of each cell type. The mechanism is heightened C3ar1/C5ar1 signaling resulting from the loss of CD55's restraint jointly potentiating growth factor production by each cell type. Examination of the effect of lifted CD55 restraint in four types of injury (burn, corneal denudation, ear lobe puncture, and reengraftment of autologous skin) showed that disabled CD55 function robustly accelerated healing in all cases, whereas disabled C3ar1/C5ar1 signaling universally retarded it. In wild-type mice with burns or injured corneas, applying a mouse anti-mouse CD55 blocking Ab (against CD55's active site) to wounds accelerated the healing rate by 40-70%. To our knowledge, these results provide new insights into mechanisms that underlie wound repair and open up a new tool for accelerating healing.
Collapse
Affiliation(s)
- Lorna Kang
- Institute of Pathology, Cleveland Medical Center, Cleveland, OH 44106
| | - Maryo Kohen
- Department of Ophthalmology, Case Western Reserve University, Cleveland Medical Center, Cleveland, OH 44106
| | - Isaac McCarthy
- Institute of Pathology, Cleveland Medical Center, Cleveland, OH 44106
| | - Emma Hammelef
- Institute of Pathology, Cleveland Medical Center, Cleveland, OH 44106
| | - Hae Suk Kim
- Institute of Pathology, Cleveland Medical Center, Cleveland, OH 44106
- currently TheragenEtex Bio Institute, Kore
| | - R Bapputty
- Department of Ophthalmology, Case Western Reserve University, Cleveland Medical Center, Cleveland, OH 44106
- Department of Pediatrics Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH 44106
| | - Rose Gubitosi-Klug
- Department of Ophthalmology, Case Western Reserve University, Cleveland Medical Center, Cleveland, OH 44106
- Department of Pediatrics Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH 44106
| | - Faruk H. Orge
- Department of Ophthalmology, Case Western Reserve University, Cleveland Medical Center, Cleveland, OH 44106
- Department of Pediatrics Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH 44106
| | - Timothy Kern
- Department of Pharmacology, Cleveland Medical Center, Cleveland, OH 44106
- currently Univ. of California, Irvine
| | - M. Edward Medof
- Institute of Pathology, Cleveland Medical Center, Cleveland, OH 44106
| |
Collapse
|
3
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
The GPI-Anchored Protein Thy-1/CD90 Promotes Wound Healing upon Injury to the Skin by Enhancing Skin Perfusion. Int J Mol Sci 2022; 23:ijms232012539. [PMID: 36293394 PMCID: PMC9603913 DOI: 10.3390/ijms232012539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Wound healing is a highly regulated multi-step process that involves a plethora of signals. Blood perfusion is crucial in wound healing and abnormalities in the formation of new blood vessels define the outcome of the wound healing process. Thy-1 has been implicated in angiogenesis and silencing of the Thy-1 gene retards the wound healing process. However, the role of Thy-1 in blood perfusion during wound closure remains unclear. We proposed that Thy-1 regulates vascular perfusion, affecting the healing rate in mouse skin. We analyzed the time of recovery, blood perfusion using Laser Speckle Contrast Imaging, and tissue morphology from images acquired with a Nanozoomer tissue scanner. The latter was assessed in a tissue sample taken with a biopsy punch on several days during the wound healing process. Results obtained with the Thy-1 knockout (Thy-1−/−) mice were compared with control mice. Thy-1−/− mice showed at day seven, a delayed re-epithelialization, increased micro- to macro-circulation ratio, and lower blood perfusion in the wound area. In addition, skin morphology displayed a flatter epidermis, fewer ridges, and almost no stratum granulosum or corneum, while the dermis was thicker, showing more fibroblasts and fewer lymphocytes. Our results suggest a critical role for Thy-1 in wound healing, particularly in vascular dynamics.
Collapse
|
5
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
6
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
7
|
Zhang N, Liu K, Wang K, Zhou C, Wang H, Che S, Liu Z, Yang H. Dust induces lung fibrosis through dysregulated DNA methylation. ENVIRONMENTAL TOXICOLOGY 2019; 34:728-741. [PMID: 30815999 DOI: 10.1002/tox.22739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Pneumoconiosis is a serious occupational disease that often occurs to coal workers with no early diagnosis and effective treatment at present. Diffuse pulmonary fibrosis is the major pathological change of pneumoconiosis, and its mechanism is still unclear. Epigenetics is involved in the development of many diseases, and it is closely associated with fibrosis. In this study, we investigated whether DNA methylation contributes to the pathogenesis of pulmonary fibrosis in pneumoconiosis. By exposure to coal dust or silica dust, we established the models of coal worker's pneumoconiosis (CWP), which showed an increased expression of COL-I, COL-III. We further found that DNMT1, DNMT3a, DNMT3b, MBD2, MeCP2 protein expression changed. Pretreatment with DNMT inhibitor 5-aza-dC reduced expression of COL-I, COL-III, and reduced pulmonary fibrosis. In summary, our results showed that DNA methylation contributes to dust-induced pulmonary fibrosis and that it may serve as a theoretical basis for testing DNA methyltransferase inhibitors in the treatment of CWP.
Collapse
Affiliation(s)
- Na Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Keliang Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ci Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Hejing Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shuangshuang Che
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhihong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
8
|
Saalbach A, Anderegg U. Thy‐1: more than a marker for mesenchymal stromal cells. FASEB J 2019; 33:6689-6696. [DOI: 10.1096/fj.201802224r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venerology, and AllergologyFaculty of MedicineLeipzig UniversityLeipzigGermany
| | - Ulf Anderegg
- Department of Dermatology, Venerology, and AllergologyFaculty of MedicineLeipzig UniversityLeipzigGermany
| |
Collapse
|
9
|
Hu P, Barker TH. Thy-1 in Integrin Mediated Mechanotransduction. Front Cell Dev Biol 2019; 7:22. [PMID: 30859101 PMCID: PMC6397864 DOI: 10.3389/fcell.2019.00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchored glycoprotein Thy-1 has been prevalently expressed on the surface of various cell types. The biological function of Thy-1 ranges from T cell activation, cell adhesion, neurite growth, differentiation, metastasis and fibrogenesis and has been extensively reviewed elsewhere. However, current discoveries implicate Thy-1 also functions as a key mechanotransduction mediator. In this review, we will be focusing on the role of Thy-1 in translating extracellular mechanic cues into intracellular biological cascades. The mechanotransduction capability of Thy-1 relies on trans and cis interaction between Thy-1 and RGD-binding integrins; and will be discussed in depth in the review.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
Lee MJ, Lee D, Jung HS. Wound healing mechanism in Mongolian gerbil skin. Histochem Cell Biol 2018; 151:229-238. [DOI: 10.1007/s00418-018-1752-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
11
|
Wang J, Wu X, Zheng Y, Wen H, Ji H, Zhao Y, Guan W. Isolation and biological characterization of mesenchymal stem cells from goose dermis. Poult Sci 2018; 97:3236-3247. [PMID: 29790972 DOI: 10.3382/ps/pey178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
The skin is a natural target of stem cell research because of its large size and easy accessibility. Cutaneous mesenchymal stem cells have shown to be a promising source of various adult stem cell or progenitor cell populations, which provide an important source of stem cell-based investigation. Nowadays, much work has been done on dermal-derived mesenchymal stem cells (DMSCs) from humans, mice, sheep, and other mammals, but the literature on avian species has been rarely reported. As an animal model, the goose is an endemic species abounding in dermal tissues which is important in the global economy. In this study, we isolated and established the mesenchymal stem cell line from dermis tissue of goose, which were subcultured to passage 21 in vitro without loss of their functional integrity in terms of morphology, renewal capacity, and presence of mesenchymal stem cell markers. Cryopreservation and resuscitation were also observed in different passages. To investigate the biological characteristics of goose DMSCs, immunofluorescence, reverse transcription-polymerase chain reaction, and flow cytometry were used to detect the characteristic surface markers. Growth curves and the capacity of colony forming were performed to test the self-renew and proliferative ability. Furthermore, the DMSCs are induced to osteoblasts, adipocytes, and chondrocytes in vitro. Our results suggest that DMSCs isolated from goose embryos possess similar biological characteristics to those from other species. The methods in establishment and cultivation of goose DMSCs line demonstrated a good self-renew and expansion potential in vitro, which provided a technological platform for preserving the valuable genetic resources of poultry and a great inspiration for in vitro investigation of avian MSCs.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,School of kinesiology and health, Harbin Institute of Physical Education, Harbin, Heilongjiang province 150008, China
| | - Xulun Wu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjie Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,School of Life Sciences, Jiamusi University, Jiamusi, Heilongjiang province 154007, China
| | - Hebao Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,School of sports science, Mudanjiang Normal University, Mudanjiang, Heilongjiang province 157011, China
| | - Hongda Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,School of kinesiology and health, Harbin Institute of Physical Education, Harbin, Heilongjiang province 150008, China
| | - Yuhua Zhao
- School of kinesiology and health, Harbin Institute of Physical Education, Harbin, Heilongjiang province 150008, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Mi B, Liu G, Zhou W, Lv H, Zha K, Liu Y, Wu Q, Liu J. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair. Mol Med Rep 2017; 16:8146-8154. [PMID: 28983581 PMCID: PMC5779900 DOI: 10.3892/mmr.2017.7619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of the current study was to identify gene signatures during the early proliferation stage of wound repair and the effect of TGF-β on fibroblasts and reveal their potential mechanisms. The gene expression profiles of GSE79621 and GSE27165 were obtained from GEO database. Differentially expressed genes (DEGs) were identified using Morpheus and co-expressed DEGs were selected using Venn Diagram. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. Protein-protein interaction (PPI) networks of the DEGs were constructed using Cytoscape software. PPI interaction network was divided into subnetworks using the MCODE algorithm and the function of the top one module was analyzed using DAVID. The results revealed that upregulated DEGs were significantly enriched in biological process, including the Arp2/3 complex-mediated actin nucleation, positive regulation of hyaluronan cable assembly, purine nucleobase biosynthetic process, de novo inosine monophosphate biosynthetic process, positive regulation of epithelial cell proliferation, whereas the downregulated DEGs were enriched in the regulation of blood pressure, negative regulation of cell proliferation, ossification, negative regulation of gene expression and type I interferon signaling pathway. KEGG pathway analysis showed that the upregulated DEGs were enriched in shigellosis, pathogenic Escherichia coli infection, the mitogen-activated protein kinase signaling pathway, Ras signaling pathway and bacterial invasion of epithelial cells. The downregulated DEGs were enriched in systemic lupus erythematosus, lysosome, arachidonic acid metabolism, thyroid cancer and allograft rejection. The top 10 hub genes were identified from the PPI network. The top module analysis revealed that the included genes were involved in ion channel, neuroactive ligand-receptor interaction pathway, purine metabolism and intestinal immune network for IgA production pathway. The functional analysis revealed that TGF-β may promote fibroblast migration and proliferation and defend against microorganisms at the early proliferation stage of wound repair. Furthermore, these results may provide references for chronic wound repair.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huijuan Lv
- Department of Rheumatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Kun Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qipeng Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
13
|
Mottaghitalab F, Rastegari A, Farokhi M, Dinarvand R, Hosseinkhani H, Ou KL, Pack DW, Mao C, Dinarvand M, Fatahi Y, Atyabi F. Prospects of siRNA applications in regenerative medicine. Int J Pharm 2017; 524:312-329. [PMID: 28385649 DOI: 10.1016/j.ijpharm.2017.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) has established its reputation in the field of tissue engineering owing to its ability to silence the proteins that inhibit tissue regeneration. siRNA is capable of regulating cellular behavior during tissue regeneration processes. The concept of using siRNA technology in regenerative medicine derived from its ability to inhibit the expression of target genes involved in defective tissues and the possibility to induce the expression of tissue-inductive factors that improve the tissue regeneration process. To date, siRNA has been used as a suppressive biomolecule in different tissues, such as nervous tissue, bone, cartilage, heart, kidney, and liver. Moreover, various delivery systems have been applied in order to deliver siRNA to the target tissues. This review will provide an in-depth discussion on the development of siRNA and their delivery systems and mechanisms of action in different tissues.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Daniel W Pack
- Department of Chemical & Materials Engineering and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meshkat Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Nazari B, Rice LM, Stifano G, Barron AMS, Wang YM, Korndorf T, Lee J, Bhawan J, Lafyatis R, Browning JL. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2650-64. [PMID: 27565038 DOI: 10.1016/j.ajpath.2016.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Tissue injury triggers the activation and differentiation of multiple cell types to minimize damage and initiate repair processes. In systemic sclerosis, these repair processes appear to run unchecked, leading to aberrant remodeling and fibrosis of the skin and multiple internal organs, yet the fundamental pathological defect remains unknown. We describe herein a transition wherein the abundant CD34(+) dermal fibroblasts present in healthy human skin disappear in the skin of systemic sclerosis patients, and CD34(-), podoplanin(+), and CD90(+) fibroblasts appear. This transition is limited to the upper dermis in several inflammatory skin diseases, yet in systemic sclerosis, it can occur in all regions of the dermis. In vitro, primary dermal fibroblasts readily express podoplanin in response to the inflammatory stimuli tumor necrosis factor and IL-1β. Furthermore, we show that on acute skin injury in both human and murine settings, this transition occurs quickly, consistent with a response to inflammatory signaling. Transitioned fibroblasts partially resemble the cells that form the reticular networks in organized lymphoid tissues, potentially linking two areas of fibroblast research. These results allow for the visualization and quantification of a basic stage of fibroblast differentiation in inflammatory and fibrotic diseases in the skin.
Collapse
Affiliation(s)
- Banafsheh Nazari
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa M Rice
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Giuseppina Stifano
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Alexander M S Barron
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Yu Mei Wang
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Tess Korndorf
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jungeun Lee
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Lafyatis
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jeffrey L Browning
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts; Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
15
|
IL-33-Dependent Group 2 Innate Lymphoid Cells Promote Cutaneous Wound Healing. J Invest Dermatol 2016; 136:487-496. [PMID: 26802241 PMCID: PMC4731037 DOI: 10.1038/jid.2015.406] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Breaches in the skin barrier initiate an inflammatory immune response that is critical for successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of immune cells that reside at epithelial barrier surfaces such as the skin, lung and gut and promote pro-inflammatory or epithelial repair functions following exposure to allergens, pathogens or chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and efficient wound closure. Additionally, we provide evidence suggesting that an analogous ILC2 response is operational in acute wounds of human skin. Together, these results indicate that IL-33-responsive ILC2s are an important link between the cutaneous epithelium and the immune system, acting to promote the restoration of skin integrity following injury.
Collapse
|
16
|
Schmidt M, Gutknecht D, Simon JC, Schulz JN, Eckes B, Anderegg U, Saalbach A. Controlling the Balance of Fibroblast Proliferation and Differentiation: Impact of Thy-1. J Invest Dermatol 2015; 135:1893-1902. [DOI: 10.1038/jid.2015.86] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/03/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
|
17
|
Kasuya A, Tokura Y. Attempts to accelerate wound healing. J Dermatol Sci 2014; 76:169-72. [PMID: 25468357 DOI: 10.1016/j.jdermsci.2014.11.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022]
Abstract
Wound healing is a well-orchestrated process, where numerous factors are activated or inhibited in a sequence of steps. Immediately after the infliction of damage, the repair of wound stars. The initial step is an inflammatory change with activation of innate immunity, which is followed by proliferation phase, including fibroplasia, angiogenesis and re-epithelialization. Pathological impairment of wound healing process may lead to persistent ulceration as seen in diabetic patients. Various signaling pathways are involved in wound healing. TGFβ/Smad pathway is a representative and well known to participate in fibroplasia, however, its comprehensive effect on wound healing is controversial. Experimental and clinical remedies have been being tried to promote wound healing. Advancement of cell engineering allows us to use stem cells and living skin equivalents.
Collapse
Affiliation(s)
- Akira Kasuya
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
18
|
Chen L, Mehta ND, Zhao Y, DiPietro LA. Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol 2014; 23:189-94. [PMID: 24521099 DOI: 10.1111/exd.12346] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2014] [Indexed: 12/13/2022]
Abstract
The involvement of lymphocytes in skin wound healing has not been studied extensively. This study shows that CD4 and CD8 cells are present in significant numbers in skin wounds with peak levels at days 5-10 and 7-10, respectively. Both subsets expressed inflammatory and/or regulatory cytokines. To examine the function of CD4 and CD8 lymphocytes in tissue repair, wound healing was examined in mice deficient for either CD4 or CD8 cells. Wounds in CD4 deficient mice exhibited an initial delayed infiltration of CD8 cells followed by a relative increase in CD8 cells at day 10 and thereafter. Wounds in CD4 deficient mice also displayed up-regulated expression of IL1β, IL-6, IL-17, IFN-γ, CXCL-1 and down-regulated expression of IL-4 as compared to wild-type mice. In contrast, wounds in CD8 deficient mice showed significantly decreased infiltration of CD4+ cells, neutrophils, and macrophages along with down-regulated expression of IL1β, IL-6, TNF-α, CXCL-1, CCL-2 and up-regulated expression of IL-4 as compared to wild-type mice. Despite these significant changes in cytokine expression and inflammatory cell infiltrate, the rate of wound closure, wound breaking strength, collagen content and angiogenesis in either CD4 or CD8 deficiency showed no significant difference from that of wild-type mice. The results suggest that, despite being present and involved in wound inflammation, neither CD4+ nor CD8+ cells play critical roles in the healing process of skin wounds. Further studies are needed to investigate whether these cells might play critical roles in wounds that experience stress such as ischemia or infection.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
19
|
Jósvay K, Winter Z, Katona RL, Pecze L, Marton A, Buhala A, Szakonyi G, Oláh Z, Vizler C. Besides neuro-imaging, the Thy1-YFP mouse could serve for visualizing experimental tumours, inflammation and wound-healing. Sci Rep 2014; 4:6776. [PMID: 25345415 PMCID: PMC4209462 DOI: 10.1038/srep06776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
The B6.Cg-Tg(Thy1-YFP)16Jrs/J transgenic mouse strain, widely used to study neuronal development and regeneration, expresses the yellow fluorescent protein (YFP) in the peripheral nerves and the central nervous system under the control of regulatory sequences of the Thy1 gene. The Thy1 (CD90) cell surface glycoprotein is present on many cell types besides neurons, and is known to be involved in cell adhesion, migration and signal transduction. We hypothesized that Thy1-activating conditions could probably activate the truncated Thy1 regulatory sequences used in the Thy1-YFP construct, resulting in YFP transgene expression outside the nervous system. We demonstrated that the stroma of subcutaneous tumours induced by the injection of 4T1 or MC26 carcinoma cells into BALB/c(Thy1-YFP) mice, carrying the same construct, indeed expressed the YFP transgene. In the tumour mass, the yellow-green fluorescent stromal cells were clearly distinguishable from 4T1 carcinoma cells stably transfected with red fluorescent protein. Local inflammation induced by subcutaneous injection of complete Freund's adjuvant, as well as the experimental wound-healing milieu, also triggered YFP fluorescence in both the BALB/c(Thy1-YFP) and B6.Cg-Tg(Thy1-YFP)16Jrs/J mice, pointing to eventual overlapping pathways of wound-healing, inflammation and tumour growth.
Collapse
Affiliation(s)
- Katalin Jósvay
- 1] Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary [2] Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zoltán Winter
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Róbert L Katona
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - László Pecze
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Annamária Marton
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Andrea Buhala
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zoltán Oláh
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|