1
|
Takeo M, Toyoshima KE, Fujimoto R, Iga T, Takase M, Ogawa M, Tsuji T. Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair. Nat Commun 2023; 14:4478. [PMID: 37542032 PMCID: PMC10403492 DOI: 10.1038/s41467-023-39605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
Biological rhythms are involved in almost all types of biological processes, not only physiological processes but also morphogenesis. Currently, how periodic morphological patterns of tissues/organs in multicellular organisms form is not fully understood. Here, using mouse zigzag hair, which has 3 bends, we found that a change in the combination of hair progenitors and their micro-niche and subsequent bend formation occur every three days. Chimeric loss-of-function and gain-of-function of Ptn and Aff3, which are upregulated immediately before bend formation, resulted in defects in the downward movement of the micro-niche and the rhythm of bend formation in an in vivo hair reconstitution assay. Our study demonstrates the periodic change in the combination between progenitors and micro-niche, which is vital for the unique infradian rhythm.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
- OrganTech Inc., Tokyo, 104-0028, Japan
| | - Riho Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tomoyo Iga
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Miki Takase
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | | | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.
- OrganTech Inc., Tokyo, 104-0028, Japan.
| |
Collapse
|
2
|
Kataria S, Dabas P, Saraswathy KN, Sachdeva MP, Jain S. Investigating the morphology and genetics of scalp and facial hair characteristics for phenotype prediction. Sci Justice 2023; 63:135-148. [PMID: 36631178 DOI: 10.1016/j.scijus.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Microscopic traits and ultrastructure of hair such as cross-sectional shape, pigmentation, curvature, and internal structure help determine the level of variations between and across human populations. Apart from cosmetics and anthropological applications, such as determining species, somatic origin (body area), and biogeographic ancestry, the evidential value of hair has increased with rapid progression in the area of forensic DNA phenotyping (FDP). Individuals differ in the features of their scalp hair (greying, shape, colour, balding, thickness, and density) and facial hair (eyebrow thickness, monobrow, and beard thickness) features. Scalp and facial hair characteristics are genetically controlled and lead to visible inter-individual variations within and among populations of various ethnic origins. Hence, these characteristics can be exploited and made more inclusive in FDP, thereby leading to more comprehensive, accurate, and robust prediction models for forensic purposes. The present article focuses on understanding the genetics of scalp and facial hair characteristics with the goal to develop a more inclusive approach to better understand hair biology by integrating hair microscopy with genetics for genotype-phenotype correlation research.
Collapse
Affiliation(s)
- Suraj Kataria
- Department of Anthropology, University of Delhi, India.
| | - Prashita Dabas
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India.
| | | | - M P Sachdeva
- Department of Anthropology, University of Delhi, India.
| | - Sonal Jain
- Department of Anthropology, University of Delhi, India.
| |
Collapse
|
3
|
Yoshida H, Kitano-Yuki J, Hisada K. Ethnic variations in IRS keratins alter the interaction between the keratins. Int J Dermatol 2019; 59:e120-e122. [PMID: 31875948 DOI: 10.1111/ijd.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/29/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshi Yoshida
- Hair Care Research Laboratories, Kao Corporation, Sumida-Ku, Tokyo, Japan.,Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui, Fukui, Japan
| | - Junko Kitano-Yuki
- Biological Science Laboratories, Kao Corporation, Haga-Gun, Tochigi, Japan
| | - Kenji Hisada
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui, Fukui, Japan
| |
Collapse
|
4
|
Wang J, Cui K, Yang Z, Li T, Hua G, Han D, Yao Y, Chen J, Deng X, Yang X, Deng X. Transcriptome Analysis of Improved Wool Production in Skin-Specific Transgenic Sheep Overexpressing Ovine β-Catenin. Int J Mol Sci 2019; 20:ijms20030620. [PMID: 30709037 PMCID: PMC6387261 DOI: 10.3390/ijms20030620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
β-Catenin is an evolutionarily conserved molecule in the canonical Wnt signaling pathway, which controls decisive steps in embryogenesis and functions as a crucial effector in the development of hair follicles. However, the molecular mechanisms underlying wool production have not been fully elucidated. In this study, we investigated the effects of ovine β-catenin on wool follicles of transgenic sheep produced by pronuclear microinjection with a skin-specific promoter of human keratin14 (k14). Both polymerase chain reaction and Southern blot analysis showed that the sheep carried the ovine β-catenin gene and that the β-catenin gene could be stably inherited. To study the molecular responses to high expression of β-catenin, high-throughput RNA-seq technology was employed using three transgenic sheep and their wild-type siblings. These findings suggest that β-catenin normally plays an important role in wool follicle development by activating the downstream genes of the Wnt pathway and enhancing the expression of keratin protein genes and keratin-associated protein genes.
Collapse
Affiliation(s)
- Jiankui Wang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Kai Cui
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Zu Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Tun Li
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Guoying Hua
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Deping Han
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yanzhu Yao
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Jianfei Chen
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Xiaotian Deng
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|