1
|
Mambwe B, Mellody KT, Kiss O, O'Connor C, Bell M, Watson REB, Langton AK. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int J Cosmet Sci 2025; 47:45-57. [PMID: 39128883 PMCID: PMC11788006 DOI: 10.1111/ics.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Orsolya Kiss
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Clare O'Connor
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Rachel E. B. Watson
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Abigail K. Langton
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| |
Collapse
|
2
|
Takada M, Numano K, Nakano M, Yamamoto A, Imokawa G. Treatment with Ascorbyl Glucoside-Arginine Complex Ameliorates Solar Lentigos. Int J Mol Sci 2024; 25:13453. [PMID: 39769217 PMCID: PMC11678523 DOI: 10.3390/ijms252413453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little is known about the anti-pigmenting effects of skin-whitening agents on solar lentigos (SLs). To characterize the anti-pigmenting effects of a newly designed derivative ascorbyl glucoside-arginine complex (AGAC) on SLs, lotions with or without 28% AGAC were applied twice daily for 24 weeks in a double-blind half-face study of 27 Japanese females with SLs. The pigmentation scores and skin colors of previously selected SLs on the right and left sides of the faces of the subjects were evaluated using a photo-scale, a color difference meter and a Mexameter. Treatment with the test lotion elicited a significant decrease in pigmentation scores at 24 weeks compared to week 0, with a significant decrease in pigmentation scores at 24 weeks compared to the placebo lotion. In the test lotion-treated SLs, the lightness (L) and melanin index (MI) values that reflect the pigmentation level significantly increased and decreased, respectively, at 12 and 24 weeks of treatment compared to week 0. Comparisons of increased L values or decreased MI values between the test and placebo lotion-treated SLs demonstrated that the test lotion-treated SLs had significantly higher increased L or decreased MI values than the placebo lotion-treated SLs both at 12 and 24 weeks of treatment. The sum of our results strongly indicates that AGAC is distinctly effective in ameliorating the hyperpigmentation levels of SLs at a level visibly recognizable by the subjects, without any hypo-pigmenting effects or skin problems.
Collapse
Affiliation(s)
- Mariko Takada
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan;
| | | | - Masahiko Nakano
- Cosmetic Research Center, Doctor’s Choice Co., Ltd., Tokyo 102-0071, Japan; (M.N.); (A.Y.)
| | - Akio Yamamoto
- Cosmetic Research Center, Doctor’s Choice Co., Ltd., Tokyo 102-0071, Japan; (M.N.); (A.Y.)
| | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan;
| |
Collapse
|
3
|
Zhong J, Zhao N, Song Q, Du Z, Shu P. Topical retinoids: Novel derivatives, nano lipid-based carriers, and combinations to improve chemical instability and skin irritation. J Cosmet Dermatol 2024; 23:3102-3115. [PMID: 38952060 DOI: 10.1111/jocd.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Retinoids, defined as synthetic or natural derivatives of vitamin A, have been extensively studied as anti-aging molecules that are widely applied in cosmetics. However, due to their physicochemical property, retinoids are highly unstable and extremely sensitive to light, oxygen, and temperature. Moreover, topical application of retinoids often leads to cutaneous irritation. These instabilities and irritant properties of retinoids limit their application in cosmetic and pharmaceutical products. AIM Our study aimed to provide a systematic review to summarize the mechanisms underlying the instability and irritant properties of retinoids, as well as recent developments in addressing these challenges. METHODS A comprehensive PubMed search was conducted using the following keywords: retinoids, chemical instability, skin irritation, retinoid derivatives, nano lipid-based carriers, liposomes, penetration-enhancer vesicles, ethosomes, niosomes, nanoemulsions, solid lipid nanoparticles, vitamins, soothing and hydrating agents, antioxidants and metal chelator and retinol combinations. Relevant researches published between 1968 and 2023 and studies related to these reports were reviewed. RESULTS The development of new retinoid derivatives, the utilization of new delivery systems like nano lipid-based carriers and the combination with other compounds like vitamins, soothing agents, antioxidants and metal chelator have been explored to improve the stability, bioavailability, and toxicity of the retinoid family. CONCLUSIONS Through advancements in formulation techniques, structure modification of retinoid derivatives and development of novel nano lipid-based carriers, the chemical instability and skin irritation of retinoids has been mitigated, ensuring their efficacy and potency over extended periods.
Collapse
Affiliation(s)
- Jiangming Zhong
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Qingle Song
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Rahman RT, Koo BI, Jang J, Lee DJ, Choi S, Lee JB, Nam YS. Multilayered collagen-lipid hybrid nanovesicles for retinol stabilization and efficient skin delivery. Int J Pharm 2024; 661:124409. [PMID: 38955241 DOI: 10.1016/j.ijpharm.2024.124409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Lipid-based nanocarriers have been extensively utilized for the solubilization and cutaneous delivery of water-insoluble active ingredients in skincare formulations. However, their practical application is often limited by structural instability, leading to premature release and degradation of actives. Here we present highly robust multilamellar nanovesicles, prepared by the polyionic self-assembly of unilamellar vesicles with hydrolyzed collagen peptides, to stabilize all-trans-retinol and enhance its cutaneous delivery. Our results reveal that the reinforced multilayer structure substantially enhances dispersion stability under extremely harsh conditions, like freeze-thaw cycles, and stabilizes the encapsulated retinol. Interestingly, these multilamellar vesicles exhibit significantly lower cytotoxicity to human dermal fibroblasts than their unilamellar counterparts, likely due to their smaller particle number per weight, minimizing potential disruptions to cellular membranes. In artificial skin models, retinol-loaded multilamellar vesicles effectively upregulate collagen-related gene expression while suppressing the synthesis of metalloproteinases. These findings suggest that the robust multilamellar vesicles can serve as effective nanocarriers for the efficient delivery and stabilization of bioactive compounds in cutaneous applications.
Collapse
Affiliation(s)
- Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jihui Jang
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jun Bae Lee
- Innovation Lab, Cosmax Research & Innovation Center, 662 Sampyong-dong, Bundang-gu, Seongnam, Gyeonggi-do 13486, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Martins RS, Weber J, Poulikidis K, Shetawi AHA, Latif MJ, Razi SS, Lebovics RS, Bhora FY. Gene expression profiles in COVID-19-associated tracheal stenosis indicate persistent anti-viral response and dysregulated retinol metabolism. BMC Res Notes 2024; 17:140. [PMID: 38755665 PMCID: PMC11100031 DOI: 10.1186/s13104-024-06775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.
Collapse
Affiliation(s)
- Russell Seth Martins
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA.
- Division of Thoracic Surgery, Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network- Central Region, 65 James Street, 08820, Edison, NJ, USA.
| | - Joanna Weber
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Kostantinos Poulikidis
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Al Haitham Al Shetawi
- Division of Surgical Oncology, Department of Surgery, Dyson Center for Cancer Care, Vassar Brothers Medical Center, Nuvance Health, 12601, Poughkeepsie, NY, USA
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Vassar Brothers Medical Center, Nuvance Health, 12601, Poughkeepsie, NY, USA
| | - M Jawad Latif
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Syed Shahzad Razi
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Robert S Lebovics
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA
| | - Faiz Y Bhora
- Department of Surgery, Hackensack Meridian School of Medicine, Hackensack Meridian Health (HMH) Network, 08820, Edison, NJ, USA.
- Chief of Thoracic Surgery, Hackensack Meridian Health (HMH) Network- Central Region, Hackensack Meridian School of Medicine, 65 James Street, 08820, Edison, NJ, USA.
| |
Collapse
|
7
|
Griffiths TW, Watson REB, Langton AK. Skin ageing and topical rejuvenation strategies. Br J Dermatol 2023; 189:i17-i23. [PMID: 37903073 DOI: 10.1093/bjd/ljad282] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 11/01/2023]
Abstract
Skin ageing is a complex process involving the additive effects of skin's interaction with its external environment, predominantly chronic sun exposure, upon a background of time-dependent intrinsic ageing. Skin health and beauty is considered one of the principal factors perceived to represent overall 'health and wellbeing'; thus, the demand for skin rejuvenation strategies has rapidly increased, with a worldwide annual expenditure expected to grow from $US24.6 billion to around $US44.5 billion by 2030 (https://www.databridgemarketresearch.com/reports/global-facial-rejuvenation-market). Skin rejuvenation can be achieved in several ways, ranging from laser and device-based treatments to chemical peels and injectables; however, topical skin care regimes are a mainstay treatment for ageing skin and all patients seeking skin rejuvenation can benefit from this relatively low-risk intervention. While the most efficacious topical rejuvenation treatment is application of tretinoin (all-trans retinoic acid) - a prescription-only medicine considered to be the clinical 'gold standard' - a hybrid category of 'cosmeceutical' products at the midpoint of the spectrum of cosmetics and pharmaceutical has emerged. This article reviews the clinical manifestations of skin ageing and the available topical treatments for skin rejuvenation, including retinoids, peptides and antioxidants.
Collapse
Affiliation(s)
- Tamara W Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Republic of Singapore
| | - Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Kang S, Kim K, Jun SH, Lee S, Kim J, Shin JG, Kim Y, Kim M, Park SG, Kang NG. Anti-Irritant Strategy against Retinol Based on the Genetic Analysis of Korean Population: A Genetically Guided Top-Down Approach. Pharmaceutics 2021; 13:pharmaceutics13122006. [PMID: 34959288 PMCID: PMC8706521 DOI: 10.3390/pharmaceutics13122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Retinol, one of the most powerful cosmetic materials for anti-aging supported by a solid scientific background, exhibits a wide range of type and severity of irritation while showing limited user compliance. The lack of understanding of the mechanism of retinol-induced irritation has been the main hurdle in the development of anti-irritation strategies. Here, we identified 30 genetic markers related to the susceptibility to retinol-induced irritation in the Korean population. Based on the genetic analysis, a novel formula against retinol-induced irritation was developed, which mitigated the molecular pathogenesis—as indicated by the genetic markers—of the retinol-induced irritation. In human tests, this formula effectively decreased retinol-induced irritation. Furthermore, a polygenic risk score model for irritation was constructed and validated. Our comprehensive approach for the analysis of retinol-induced irritation will not only aid the development of anti-irritation strategies to ensure higher user compliance but also contribute to improving the current knowledge about the biological effects of retinoids.
Collapse
Affiliation(s)
| | | | - Seung-Hyun Jun
- Correspondence: (S.-H.J.); (N.-G.K.); Tel.: +82-2-6980-1239 (S.-H.J.); +82-2-6980-1533 (N.-G.K.)
| | | | | | | | | | | | | | - Nae-Gyu Kang
- Correspondence: (S.-H.J.); (N.-G.K.); Tel.: +82-2-6980-1239 (S.-H.J.); +82-2-6980-1533 (N.-G.K.)
| |
Collapse
|
9
|
Arantes VT, Faraco AA, Ferreira FB, Oliveira CA, Martins-Santos E, Cassini-Vieira P, Barcelos LS, Ferreira LA, Goulart GA. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf B Biointerfaces 2020; 188:110749. [DOI: 10.1016/j.colsurfb.2019.110749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
10
|
Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci 2020; 21:ijms21041194. [PMID: 32054030 PMCID: PMC7072774 DOI: 10.3390/ijms21041194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal barrier integrity could be influenced by various factors involved in epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids. Dysfunction of this barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the epidermal barrier. These interactions through vicious cycles make the mechanism complicated in connection with other mechanisms, particularly immunologic responses. In this article, the molecular mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early time of experimental irritation were included. On the other hand, the mechanism associated with epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms have been identified in cultured cells or animal models. Nonetheless, research into the relationship between the causative molecules has been gradually increasing. Further evidence-based systematic data of target molecules and their interactions would probably be helpful for a better understanding of the molecular mechanism underlying the dysfunction of the epidermal barrier.
Collapse
|
11
|
Anti-melasma codrug of retinoic acid assists cutaneous absorption with attenuated skin irritation. Eur J Pharm Biopharm 2017; 114:154-163. [DOI: 10.1016/j.ejpb.2017.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/16/2016] [Accepted: 01/12/2017] [Indexed: 01/28/2023]
|
12
|
Choi M, Park M, Lee S, Lee JW, Cho MC, Noh M, Lee C. Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction. Biomol Ther (Seoul) 2017; 25:296-307. [PMID: 28365978 PMCID: PMC5424640 DOI: 10.4062/biomolther.2017.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/29/2022] Open
Abstract
In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced blockage of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.
Collapse
Affiliation(s)
- Moonju Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Minkyung Park
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Suhyon Lee
- R&D Institute, Biosolution Co., Ltd., Seoul 01811, Republic of Korea
| | - Jeong Woo Lee
- Department of Urology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Min Chul Cho
- Department of Urology, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
13
|
Cheong KA, Lee TR, Lee AY. Complementary effect of hydroquinone and retinoic acid on corneocyte desquamation with their combination use. J Dermatol Sci 2017; 87:192-200. [PMID: 28433430 DOI: 10.1016/j.jdermsci.2017.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/09/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Retinoic acid (RA) enhances skin-lightening capabilities of hydroquinone (HQ), at least in part, by facilitating desquamation which leads to increase penetration of HQ. The desquamation also affects skin irritation levels. The mechanism of RA-induced desquamation, however, has not been completely explored and no such data has been available for HQ uses. OBJECTIVE To examine the role of HQ, RA, and their combination in the desquamation. METHODS Primary cultured normal human keratinocytes, which were treated with HQ and/or RA in presence or absence of serine-specific inhibitor Kazal type5 (SPINK5)/lympho-epithelial Kazal-type-related inhibitor (LEKTI) knockdown or recombinant human SPINK5/LEKTI, and biopsied skin samples applied with HQ or RA were examined. Expression levels of corneodesmosin (CDSN), desmocollin1 (DSC1), kallikrein5 (KLK5), KLK7, and SPINK5/LEKTI, and proteolysis activity against extracted human skin epidermal protein were determined using time-course real-time PCR, Western blotting, ELISA, and immunofluorescence staining. RESULTS HQ increased but RA decreased the synthesis of CDSN and DSC1. HQ reduced corneodesmosome degradation by the upregulation of SPINK5/LEKTI, whereas RA showed opposite results without upregulation of SPINK5/LEKTI. The combination of HQ and RA was close to the sum of the individual components. CONCLUSIONS HQ reduced corneocyte desquamation. However, RA enhanced desquamation. The combination induced more desquamation than HQ but less than RA.
Collapse
Affiliation(s)
- Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Institute, AmorePacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-773, Republic of Korea.
| |
Collapse
|