1
|
Sun Z, Zhang F, Liu X, Du X, Xiao Y, Sun K, Wang R. Dissecting the anti-pancreatic cancer mechanism of gold nanorods mediate photothermal therapy through quantitative proteomics analysis. Biochem Biophys Res Commun 2025; 747:151288. [PMID: 39798534 DOI: 10.1016/j.bbrc.2025.151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Gold nanorods (GNRs) mediated photothermal therapy (PTT) represents a promising technique for cancer treatment, utilizing GNRs in conjunction with near-infrared (NIR) laser irradiation to convert energy into heat. In the present study, we employed PTT to induce apoptosis in pancreatic cancer cells and investigated its underlying mechanisms through quantitative proteomics analysis. Initially, we established that temperatures ranging from 47 to 51°C significantly enhance cellular apoptosis without inducing necrosis. Furthermore, we identified key pathways involved in cell apoptosis, including apoptosis, oxidative stress, and proteasome pathways. Notably, thermal stimulation also resulted in the upregulation of proteins involved in autophagy, which intriguingly contribute to cellular apoptosis via autophagy regulation. Collectively, our findings demonstrate that GNRs-PTT is an effective therapeutic option for pancreatic cancer and provide a theoretical foundation for the clinical application of photothermal therapy. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD058930.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China
| | - Feng Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 110006, China
| | - Xixi Liu
- Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China
| | - Xiangning Du
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, Liaoning, 116011, China
| | - Yan Xiao
- Department of Pathology, The Central Hospital of Jiangnan University, No. 68 Zhongshan Road, Wuxi, Jiangsu, 214000, China
| | - Kai Sun
- Department of Oncology, Ganzhou Cancer Hospital, No. 19 Shui donghuayuanqian, Ganzhou, Jiangxi, 314000, China.
| | - Ruoyu Wang
- Department of Oncology, The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, China.
| |
Collapse
|
2
|
Zhao F, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Shan Y, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Targeted siRNA Therapy for Psoriasis: Translating Preclinical Potential into Clinical Treatments. Immunotargets Ther 2024; 13:259-271. [PMID: 38770264 PMCID: PMC11104385 DOI: 10.2147/itt.s458800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the excessive proliferation of keratinocytes and heightened immune activation. Targeting pathogenic genes through small interfering RNA (siRNA) therapy represents a promising strategy for the treatment of psoriasis. This mini-review provides a comprehensive summary of siRNA research targeting the pathogenesis of psoriasis, covering aspects such as keratinocyte function, inflammatory cell roles, preclinical animal studies, and siRNA delivery mechanisms. It details recent advancements in RNA interference that modulate key factors including keratinocyte proliferation (Fibroblast Growth Factor Receptor 2, FGFR2), apoptosis (Interferon Alpha Inducible Protein 6, G1P3), differentiation (Grainyhead Like Transcription Factor 2, GRHL2), and angiogenesis (Vascular Endothelial Growth Factor, VEGF); immune cell infiltration and inflammation (Tumor Necrosis Factor-Alpha, TNF-α; Interleukin-17, IL-17); and signaling pathways (JAK-STAT, Nuclear Factor Kappa B, NF-κB) that govern immunopathology. Despite significant advances in siRNA-targeted treatments for psoriasis, several challenges persist. Continued scientific developments promise the creation of more effective and safer siRNA medications, potentially enhancing the quality of life for psoriasis patients and revolutionizing treatments for other diseases. This article focuses on the most recent research advancements in targeting the pathogenesis of psoriasis with siRNA and explores its future therapeutic prospects.
Collapse
Affiliation(s)
- Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Bingheng He
- Department of Rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Interaction with the Assembly Chaperone Ump1 Promotes Incorporation of the β7 Subunit into Half-Proteasome Precursor Complexes Driving Their Dimerization. Biomolecules 2022; 12:biom12020253. [PMID: 35204754 PMCID: PMC8961534 DOI: 10.3390/biom12020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong defects in the autocatalytic processing of β subunits, and consequently have lower proteolytic activity. Here, we dissect an important interaction of Ump1 with the β7 subunit that is critical for proteasome biogenesis. Functional domains of Ump1 and the interacting proteasome subunit β7 were mapped, and the functional consequences of their deletion or mutation were analyzed. Cells in which the first sixteen Ump1 residues were deleted display growth phenotypes similar to ump1∆, but massively accumulate 15S PC and distinct proteasome intermediate complexes containing the truncated protein. The viability of these cells depends on the transcription factor Rpn4. Remarkably, β7 subunit overexpression re-established viability in the absence of Rpn4. We show that an N-terminal domain of Ump1 and the propeptide of β7 promote direct interaction of the two polypeptides in vitro. This interaction is of critical importance for the recruitment of β7 precursor during proteasome assembly, a step that drives dimerization of 15S PCs and the formation of 20S CPs.
Collapse
|
5
|
Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis 2022; 13:81. [PMID: 35075118 PMCID: PMC8786887 DOI: 10.1038/s41419-022-04523-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Psoriasis is a complex long-lasting inflammatory skin disease with high prevalence and associated comorbidity. It is characterized by epidermal hyperplasia and dermal infiltration of immune cells. Here, we review the role of keratinocytes in the pathogenesis of psoriasis, focusing on factors relevant to genetics, cytokines and receptors, metabolism, cell signaling, transcription factors, non-coding RNAs, antimicrobial peptides, and proteins with other different functions. The critical role of keratinocytes in initiating and maintaining the inflammatory state suggests the great significance of targeting keratinocytes for the treatment of psoriasis.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Lian Cui
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China.
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China.
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China.
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China.
| |
Collapse
|
6
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
7
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
8
|
Yadav K, Singh D, Singh MR. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur J Pharmacol 2021; 907:174254. [PMID: 34118225 DOI: 10.1016/j.ejphar.2021.174254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Psoriasis is an autoimmune chronic inflammatory condition of skin affecting 125 million populaces around the globe. It is implicated as a result of multifaceted phenomena involving various cell and subcell activities with the aid of numerous cellular and molecular components including signaling aisle and regulatory proteins owing to the development of such hyperproliferative dermatological conditions. This involves a deeply complex and conflicting pathology owing to genetic and immunological deviations resulting from the unusual presentation of different signaling pathways and regulatory proteins. Explorations of these biomarkers and intervention of molecular and cellular processes in psoriasis are yet to be investigated and could be an exceptional aspect for understanding pathology with successful targeting of disease. In the presented study, we have integrated molecular insights, including signaling molecules, pathways, and proteins implicated in pathogenesis, and we have attempted to link this knowledge to the targeting of these phenomena in order to manage the conditions precisely. Further, therapeutic delivery approaches for targeting distinct layers of skin have also been investigated based on the application of different nanocarriers for successful psoriasis treatment.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492010, India.
| |
Collapse
|
9
|
Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body? Stem Cell Rev Rep 2021; 17:214-230. [PMID: 33403490 PMCID: PMC7785129 DOI: 10.1007/s12015-020-10108-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.
Collapse
Affiliation(s)
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey. .,School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018; 118:1796-1810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is defined as a long-lasting multifactorial inflammatory autoimmune skin condition precisely characterized by delimited, erythematic papules with adherent shiny scales. The conditions are led by hyperproliferative responses of epidermis due to hyperactivation and immature keratinocytes production. The psoriatic skin consists of the thickened epidermal layer, in concurrence with inflammatory exudates in the dermis mainly of dendritic cells, neutrophils, T cells, and macrophages, contributing to the distinct manifestation of psoriatic lesions. It consents to multifaceted and discrete pathology due to the genetic and immunological alteration resulting from abnormal expression of various regulatory and structural proteins. These proteins are associated with various cellular and sub-cellular activities. Therefore, the presence of protein in a pathological cellular environment in the psoriatic lesions as well as in serum could be a great avenue for the insight of pathomechanism, anticipation and diagnosis of psoriasis. Research of protein biomarker in psoriasis is yet a developing realm to be explored by both fundamental and clinical researchers. This review is an attempt to assimilate the current discoveries and revelations of different proteins as a biomarker and their importance in pathogenesis, diagnosis, treatment, and anticipation of both the inflammatory and other dermatological aspects of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
12
|
Rudraiah S, Shamilov R, Aneskievich BJ. TNIP1 reduction sensitizes keratinocytes to post-receptor signalling following exposure to TLR agonists. Cell Signal 2018; 45:81-92. [PMID: 29413846 DOI: 10.1016/j.cellsig.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 12/15/2022]
Abstract
Cell level inflammatory signalling is a combination of initiation at cell membrane receptors and modulation by cytoplasmic regulatory proteins. For keratinocytes, the predominant cell type in the epidermis, this would include toll-like receptors (TLR) and cytoplasmic proteins that propagate or dampen post-receptor signalling. We previously reported that increased levels of tumor necrosis factor α induced protein 3-interacting protein 1 (TNIP1) in HaCaT keratinocytes leads to decreased expression of stress response and inflammation-associated genes. This finding suggested decreased TNIP1 levels, as seen in some cutaneous disease states, may produce the opposite effect, sensitizing cells to triggers of inflammatory signalling including those sensed by TLR. In this study of TNIP1-deficient HaCaT keratinocytes we examined intracellular signalling consequences especially those expected to produce gene expression changes downstream of TLR3 or TLR2/6 activation by Poly (I:C) or FSL-1, agonists modeling skin relevant pathogens. We found TNIP1-deficient keratinocytes are hyper-sensitive to TLR activation compared to control cells with a normal complement of TNIP1 and receiving the same agonist stimulation. TNIP1-deficient keratinocytes have increased levels of activated (phosphorylated) cytoplasmic mediators such as JNK and p38 and greater nuclear translocation of NF-κB and phospho-p38 when exposed to TLR ligands. This is consistent with significantly increased expression of several inflammatory cytokines and chemokines, such as IL-6 and IL-8. These results describe how decreased TNIP1 levels promote a hyper-sensitive state in HaCaT keratinocytes evidenced by increased activation of signalling molecules downstream of TLR agonists and increased expression of pro-inflammatory mediators. TNIP1 keratinocyte deficiency as reported for some skin diseases may predispose these cells to excessive inflammatory signalling upon exposure to viral or bacterial ligands for TLR.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA; Department of Pharmaceutical Sciences, University of Saint Joseph, Hartford, CT 06103, USA.
| | - Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA.
| | - Brian J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA; Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3092, USA.
| |
Collapse
|