1
|
Hofmann SR, Carlsson E, Kapplusch F, Carvalho AL, Liloglou T, Schulze F, Abraham S, Northey S, Russ S, Surace AEA, Yoshida N, Tsokos GC, Hedrich CM. Cyclic AMP Response Element Modulator-α Suppresses PD-1 Expression and Promotes Effector CD4 + T Cells in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2021; 207:55-64. [PMID: 34135066 DOI: 10.4049/jimmunol.2100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Effector CD4+ T lymphocytes contribute to inflammation and tissue damage in psoriasis, but the underlying molecular mechanisms remain poorly understood. The transcription factor CREMα controls effector T cell function in people with systemic autoimmune diseases. The inhibitory surface coreceptor PD-1 plays a key role in the control of effector T cell function and its therapeutic inhibition in patients with cancer can cause psoriasis. In this study, we show that CD4+ T cells from patients with psoriasis and psoriatic arthritis exhibit increased production of IL-17 but decreased expression of IL-2 and PD-1. In genetically modified mice and Jurkat T cells CREMα expression was linked to low PD-1 levels. We demonstrate that CREMα is recruited to the proximal promoter of PDCD1 in which it trans-represses gene expression and corecruits DNMT3a-mediating DNA methylation. As keratinocytes limit inflammation by PD-1 ligand expression and, in this study, reported reduced expression of PD-1 on CD4+ T cells is linked to low IL-2 and high IL-17A production, our studies reveal a molecular pathway in T cells from people with psoriasis that can deserve clinical exploitation.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Franz Kapplusch
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ana L Carvalho
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susanne Abraham
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna E A Surace
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nobuya Yoshida
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; .,Department of Rheumatology, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom; and.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's National Health Service Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
2
|
de Jesús-Gil C, Sans-de SanNicolàs L, García-Jiménez I, Ferran M, Celada A, Chiriac A, Pujol RM, Santamaria-Babí LF. The Translational Relevance of Human Circulating Memory Cutaneous Lymphocyte-Associated Antigen Positive T Cells in Inflammatory Skin Disorders. Front Immunol 2021; 12:652613. [PMID: 33833765 PMCID: PMC8021783 DOI: 10.3389/fimmu.2021.652613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Circulating memory T cells are heterogeneous in their tissue tropism. The skin-seeking T cell subset expresses the cutaneous lymphocyte-associated antigen (CLA) on their surface. CLA+ memory T cells not only migrate from blood to skin but also recirculate between blood and skin. Studying CLA+ memory T cells in cutaneous diseases has allowed a better understanding of immune-inflammatory mechanisms that take place. The analysis of the phenotypical features of these cells, their antigen specificity, cytokine production profile, and changes in relationship to clinical status and therapies among other characteristics have led to the concept that they constitute peripheral cellular biomarkers in T cell-mediated cutaneous conditions. CLA+ memory T cells are of relevance in the pathogenesis of several cutaneous diseases, such as psoriasis (PSO), atopic dermatitis, vitiligo, and drug-induced allergic reactions, to name a few. The interaction of circulating CLA+ T cells with skin-resident cells has been investigated in different ex vivo coculture models made out of clinical samples. Interestingly, microbes that are present in the skin or related with human skin diseases are preferentially recognized by CLA+ T cells. Thus, the interaction of Streptococcus pyogenes with CLA+ T cells in PSO is providing novel concepts that help to understand disease immunopathogenesis. The goal of this review is to present latest results in the field of CLA+ T cells in T cell-mediated inflammatory skin diseases and their translational relevance for human immunodermatology.
Collapse
Affiliation(s)
- Carmen de Jesús-Gil
- Translational Immunology, Department of Cellular Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Lídia Sans-de SanNicolàs
- Translational Immunology, Department of Cellular Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Irene García-Jiménez
- Translational Immunology, Department of Cellular Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Marta Ferran
- Department of Dermatology, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Celada
- Macrophage Biology, Department of Cellular Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Anca Chiriac
- Department of Dermatophysiology, Apollonia University, Iasi, Romania
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology, and Immunology, Faculty of Biology, Universitat de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|