1
|
Chou PH, Su CL, Fu SH, Schleip R, Liang WZ. Essential oil extract p‑cresol effect on Ca 2+ signaling and its underlying mechanism in DBTRG‑05MG human glioblastoma cells. Biomed Rep 2025; 22:80. [PMID: 40093511 PMCID: PMC11904762 DOI: 10.3892/br.2025.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 03/19/2025] Open
Abstract
The effect of para (p)-cresol, an essential oil component, on calcium ion (Ca2+) signaling in human glioblastoma is unknown. The present study aimed to investigate how p-cresol influences intracellular Ca2+ levels ([Ca2+]i) and viability in DBTRG-05MG human glioblastoma cells. Cells were treated with p-cresol to assess its impact on cell viability and [Ca2+]i. Cell viability was evaluated using a WST-1 assay. [Ca2+]i was measured using a fluorescence-based Ca2+ indicator. Cells were loaded with the Ca2+-sensitive dye (fura-2), and fluorescence intensity was recorded before and after p-cresol treatment to determine changes in [Ca2+]i. p-Cresol induced concentration-dependent increases in [Ca2+]i between 50 and 150 µM. At 50-250 µM, p-cresol triggered cell death; this effect was reversed by pretreating the cells with the Ca2+ chelator BAPTA-AM. The removal of extracellular Ca2+ inhibited Ca2+ entry. p-Cresol-induced Ca2+ influx was confirmed by Mn2+-induced quenching of fura-2 fluorescence. Store-operated Ca2+ channel modulators SKF96365 and 2-aminoethoxydiphenyl borate and the protein kinase C inhibitor GF109203X inhibited p-cresol-induced Ca2+ entry, but voltage-gated Ca2+ channel blocker nifedipine did not. Treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin in Ca2+-free medium inhibited p-cresol-induced [Ca2+]i rises; conversely, treatment with p-cresol decreased thapsigargin-induced [Ca2+]i rises. Furthermore, phospholipase C (PLC) inhibition with U73122 abolished p-cresol-induced [Ca2+]i rises. In DBTRG-05MG cells, p-cresol triggered Ca2+-associated cell death. The process involved the entry of Ca2+ through PKC-regulated store-operated Ca2+ channels and release of Ca2+ from the endoplasmic reticulum, which depends on PLC. Additionally, BAPTA-AM, which has Ca2+-chelating properties, may be a promising compound in preventing p-cresol-induced cytotoxicity, a potential breakthrough in neurotoxic research in glioblastoma cell model.
Collapse
Affiliation(s)
- Pin-Hao Chou
- Department of Acupressure Technology, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan, R.O.C
- Stark Works Co., Ltd. Taipei 10491, Taiwan, R.O.C
| | - Chun-Lang Su
- Chung Jen Junior College of Nursing, Health Science and Management, Chiayi 60077, Taiwan, R.O.C
- Department of Rehabilitation, Tung Wah Hospital, Nantou 557, Taiwan, R.O.C
| | - Shih-Hau Fu
- Department of Acupressure Technology, Chung Hwa University of Medical Technology, Tainan 717302, Taiwan, R.O.C
| | - Robert Schleip
- European Rolfing Association, Medical Faculty of Ulm University, D-89081 Ulm, Germany
| | - Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu, Pingtung 907101, Taiwan, R.O.C
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan, R.O.C
| |
Collapse
|
2
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
Mäki-Opas I, Hämäläinen M, Moilanen E, Scotece M. TRPA1 as a potential factor and drug target in scleroderma: dermal fibrosis and alternative macrophage activation are attenuated in TRPA1-deficient mice in bleomycin-induced experimental model of scleroderma. Arthritis Res Ther 2023; 25:12. [PMID: 36698198 PMCID: PMC9875496 DOI: 10.1186/s13075-023-02994-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere, Finland.
| | - Mari Hämäläinen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Morena Scotece
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland ,grid.428472.f0000 0004 1794 2467Current affiliation: Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Wu X, Gou H, Zhou O, Qiu H, Liu H, Fu Z, Chen L. Human umbilical cord mesenchymal stem cells combined with pirfenidone upregulates the expression of RGS2 in the pulmonary fibrosis in mice. Respir Res 2022; 23:270. [PMID: 36182915 PMCID: PMC9526322 DOI: 10.1186/s12931-022-02192-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Objective The therapeutic effect of umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in combination with pirfenidone (PFD) on pulmonary fibrosis in mice and its possible mechanism were investigated. Methods C57BL/6 mice were randomly divided into six groups: control group, model group, P10 group, P30 group, P100 group, and P300 group. Modeled by tracheal intubation with 3 mg/kg bleomycin drip, each dose of PFD was administered daily by gavage from day 7 onwards. The mice were observed continuously for 21 days and survival was recorded. Lung tissues were collected on day 21, and hematoxylin–eosin (HE) and Masson staining were performed to assess morphological changes and collagen deposition in the lungs. Collagen content was measured by the Sircol method, and fibrosis marker levels were detected by PCR and Western blot. Another batch of C57BL/6 mice was then randomly divided into five groups: hUC-MSC control group, model group, P100 group, hUC-MSC treatment group, and hUC-MSCs + P30 group. On day 7, 5 × 105 hUC-MSCs were injected into the tail vein, the mice were administered PFD gavage daily from day 7 onwards, and their survival was recorded. Lung tissues were collected on day 21 to detect pathological changes, the collagen content, and the expression of regulator of G protein signaling 2 (RGS2). Pulmonary myofibroblasts (MFBs) were divided into an MFB group and an MFB + hUC-MSCs group; different doses of PFD were administered to each group, and the levels of RGS2, intracellular Ca2+, and fibrosis markers were recorded for each group. Results Compared with other PFD group doses, the P100 group had significantly improved mouse survival and lung pathology and significantly reduced collagen and fibrosis marker levels (p < 0.05). The hUC-MSCs + P30 group had significantly improved mouse survival and lung pathology, significantly reduced collagen content and fibrosis marker levels (p < 0.05), and the efficacy was better than that of the P100 and hUC-MSCs groups (p < 0.05). RGS2 expression was significantly higher in the MSCs + P30 group compared with the P100 and hUC-MSCs groups (p < 0.05). PFD increased RGS2 expression in MFBs (p < 0.05) in a dose-dependent manner. Compared with PFD and hUC-MSCs treatment alone, combination of hUC-MSCs and PFD increased RGS2 protein levels, significantly decreased intracellular Ca2+ concentration, and significantly reduced fibrosis markers. Conclusion The findings suggest that hUC-MSCs combined with low-dose PFD have a therapeutic effect better than that of the two treatments used separately. Its effect on attenuating bleomycin-induced pulmonary fibrosis in mice is related to the increase of RGS2. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02192-6.
Collapse
Affiliation(s)
- Xian Wu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, Sichuan, China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hao Gou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ou Zhou
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Huijun Qiu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Hanmin Liu
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, Sichuan, China.,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhou Fu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400015, China. .,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400015, China. .,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400015, China.
| | - Lina Chen
- Division of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, Sichuan, China. .,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|