1
|
Dhumad MM, Hamdan FB, Al-Mayah QS. Angiotensin-converting enzyme insertion/deletion (I/D) gene polymorphism in Iraqi type 2 diabetic patients: association with the risk of cardiac autonomic neuropathy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Studies have shown a direct association between angiotensin-converting enzyme (ACE) and diabetic neuropathies. As such, ACE gene polymorphisms could be a risk factor for cardiac autonomic neuropathy (CAN) in patients with diabetes. The objective of our study was to investigate the association of the ACE I/D gene polymorphism with the development of CAN in Iraqi patients with type 2 diabetes mellitus (T2DM).
Results
This is a cross-sectional study that included 142 patients with T2DM comprising 62 males and 80 females, and 100 volunteers served as a healthy control group. Cardiac autonomic functions were tested using four standard Ewing’s noninvasive tests. Blood samples were taken for genetic evaluation of an ACE gene I/D polymorphism.
Analyzing ACE gene polymorphism revealed that the D allele was far more frequent among patients with diabetes than healthy control subjects (76.07% vs. 62.67%). The frequency of I/I, I/D, and D/D genotypes in patients with diabetes was 8.55%, 30.77%, and 60.68%, respectively, compared with 18.67%, 37.33%, and 44%, respectively, in controls with a significant difference in mutant homozygous genotype. However, there were no significant differences in these genotypes between patients with and without CAN. Although patients with CAN showed a much higher frequency of D allele than those without CAN, the difference did not reach significance (p = 0.054).
Conclusion
The DD genotype and D allele of the ACE I/D gene polymorphism can be a risk factor for T2DM, and the D allele of this polymorphism can even be associated with the development of CAN in these patients.
Collapse
|
2
|
Zhao Y, Zhu R, Wang D, Liu X. Genetics of diabetic neuropathy: Systematic review, meta-analysis and trial sequential analysis. Ann Clin Transl Neurol 2019; 6:1996-2013. [PMID: 31557408 PMCID: PMC6801182 DOI: 10.1002/acn3.50892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Diabetic neuropathy (DN) is one of the most common complications of diabetes that occurs in more than 67% of individuals with diabetes. Genetic polymorphisms may play an important role in DN development. However, until now, the association between genetic polymorphisms and DN risk has remained unknown. We performed a systematic review, meta-analysis, and trial sequential analysis (TSA) of the association between all genetic polymorphisms and DN risk. METHODS Relevant published studies examining the relationship between all genetic polymorphisms and DN were obtained based on a designed search strategy up to 28 February 2019. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess overall pooled effects of genetic models as well as in subgroup analyses. Sensitive analysis and publication bias were applied to evaluate the reliability of the study. Moreover, TSA was conducted to estimate the robustness of the results. RESULTS We conducted a systematic review of a total of 1256 articles, and then 106 publications reporting on 136 polymorphisms of 76 genes were extracted. We performed 107 meta-analyses on 36 studies involving 12,221 subjects to derive pooled effect estimates for eight polymorphisms. We identified that ACE I>D, MTHFR 1298A/C, GPx-1 rs1050450, and CAT -262C/T were associated with DN, while MTHFR C677T, GSTM1, GSTT1, and IL-10 -1082G/A were not. Sensitivity analysis, funnel plot, and Egger's test displayed robust results. Furthermore, the results of TSA indicated sufficient sample size in studies of ACE, GPx-1, GSTM1, and IL-10 polymorphisms. INTERPRETATION Our study assessed the association between ACE I>D, MTHFR C677T, MTHFR 1298A/C, GPx-1 rs1050450, CAT -262C/T, GSTM1, GSTT1, and IL-10 -1082G/A polymorphisms and DN risk. We hope that the data in our research study are used to study DN genetics.
Collapse
Affiliation(s)
- Yating Zhao
- Department of NeurologyFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001China
| | - Ruixia Zhu
- Department of NeurologyFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001China
| | - Danni Wang
- Department of EndocrinologyThe Fifth People's Hospital of DalianDalianLiaoning116000China
| | - Xu Liu
- Department of NeurologyFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001China
| |
Collapse
|
3
|
Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int J Mol Sci 2018; 19:ijms19113608. [PMID: 30445764 PMCID: PMC6275070 DOI: 10.3390/ijms19113608] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally. They are involved in the regulation of physiological processes, such as adaptation to physical exercise, and also in disease settings, such as systemic arterial hypertension (SAH), type 2 diabetes mellitus (T2D), and obesity. In SAH, microRNAs play a significant role in the regulation of key signaling pathways that lead to the hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, inflammation, proliferation, and phenotypic change in smooth muscle cells, and the hyperactivation of the sympathetic nervous system. MicroRNAs are also involved in the regulation of insulin signaling and blood glucose levels in T2D, and participate in lipid metabolism, adipogenesis, and adipocyte differentiation in obesity, with specific microRNA signatures involved in the pathogenesis of each disease. Many studies report the benefits promoted by exercise training in cardiovascular diseases by reducing blood pressure, glucose levels, and improving insulin signaling and lipid metabolism. The molecular mechanisms involved, however, remain poorly understood, especially regarding the participation of microRNAs in these processes. This review aimed to highlight microRNAs already known to be associated with SAH, T2D, and obesity, as well as their possible regulation by exercise training.
Collapse
|
4
|
Ciccacci C, Latini A, Greco C, Politi C, D'Amato C, Lauro D, Novelli G, Borgiani P, Spallone V. Association between a MIR499A polymorphism and diabetic neuropathy in type 2 diabetes. J Diabetes Complications 2018; 32:11-17. [PMID: 29108839 DOI: 10.1016/j.jdiacomp.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) affect a large percentage of diabetic people and impact severely on quality of life. As it seems that miRNAs and their variations might play a role in these complications, we investigated whether the rs3746444 SNP in the MIR499A gene could be associated with susceptibility to DPN and/or CAN. METHODS We analyzed 150 participants with type 2 diabetes. DNA was extracted from peripheral blood samples and genotyping was performed by TaqMan genotyping assay. Cardiovascular tests, MNSI-Q and MDNS for neuropathic symptoms and signs, VPT, and thermal thresholds were used for CAN and DPN assessment. We performed a genotype-phenotype correlation analysis. RESULTS We observed that the GG genotype was associated with a higher risk of developing CAN (P=0.002 and OR=16.08, P=0.0005 and OR=35.02, for early and confirmed CAN, respectively) and DPN (P=0.037 and OR=6.56), after correction for BMI, sex, age, HbA1c and disease duration. Moreover, the GG genotype was associated with worse values of MDNS (P=0.017), VPT (P=0.01), thermal thresholds (P=0.01), and CAN score (P<0.001). A logistic multivariate analysis confirmed that MIR499A GG genotype, disease duration and HbA1c contributed to early CAN (R2=0.26), while the same variables and age contributed to DPN (R2=0.21). With a multiple linear regression, we observed that GG genotype (P=0.001) and disease duration (P=0.035) were the main variables contributing to the CAN score (R2=0.35). CONCLUSIONS We described for the first time that the MIR499A genetic variation could be involved in diabetic neuropathies susceptibility. In particular, patients carrying the rs3746444 GG genotype had a higher risk of CAN development, together with a more severe form of CAN.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy.
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| |
Collapse
|
5
|
Prabodha LBL, Sirisena ND, Dissanayake VHW. Susceptible and Prognostic Genetic Factors Associated with Diabetic Peripheral Neuropathy: A Comprehensive Literature Review. Int J Endocrinol 2018; 2018:8641942. [PMID: 29736170 PMCID: PMC5875044 DOI: 10.1155/2018/8641942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a disorder of glucose metabolism. It is a complex process involving the regulation of insulin secretion, insulin sensitivity, gluconeogenesis, and glucose uptake at the cellular level. Diabetic peripheral neuropathy (DPN) is one of the debilitating complications that is present in approximately 50% of diabetic patients. It is the primary cause of diabetes-related hospital admissions and nontraumatic foot amputations. The pathogenesis of diabetic neuropathy is a complex process that involves hyperglycemia-induced oxidative stress and altered polyol metabolism that changes the nerve microvasculature, altered growth factor support, and deregulated lipid metabolism. Recent literature has reported that there are several heterogeneous groups of susceptible genetic loci which clearly contribute to the development of DPN. Several studies have reported that some patients with prediabetes develop neuropathic complications, whereas others demonstrated little evidence of neuropathy even after long-standing diabetes. There is emerging evidence that genetic factors may contribute to the development of DPN. This paper aims to provide an up-to-date review of the susceptible and prognostic genetic factors associated with DPN. An extensive survey of the scientific literature published in PubMed using the search terms "Diabetic peripheral neuropathy/genetics" and "genome-wide association study" was carried out, and the most recent and relevant literature were included in this review.
Collapse
Affiliation(s)
- L. B. L. Prabodha
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - N. D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - V. H. W. Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
6
|
Wu S, Han Y, Hu Q, Zhang X, Cui G, Li Z, Guan Y. Effects of Common Polymorphisms in the MTHFR and ACE Genes on Diabetic Peripheral Neuropathy Progression: a Meta-Analysis. Mol Neurobiol 2017; 54:2435-2444. [PMID: 26971290 DOI: 10.1007/s12035-016-9823-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a microvascular complication of diabetes mellitus. The aim of this meta-analysis was to evaluate the effects of methylenetetrahydrofolate reductase (MTHFR) 677 C>T and ACE I/D polymorphisms in the development of DPN. We systematically reviewed published studies on MTHFR 677 C>T and ACE I/D polymorphisms and DPN found in various types of electronic databases. Strengthening the Reporting of Observational studies in Epidemiology (STROBE) quality score systems were used to determine the quality of the articles selected for inclusion. Odds ratios (ORs) and its corresponding 95 % confidence interval (95 % CI) were calculated. We used STATA statistical software (version 12.0, Stata Corporation, College Station, TX, USA) to deal with statistical data. Our results indicated an association of ACE D>I mutation (OR = 1.43, 95 % CI 1.12-1.83, P = 0.004) and MTHFR 677 C>T mutation (OR = 1.43, 95 % CI 1.08-1.90, P = 0.014) with DPN under the allele model, and similar results were also found under the dominant model (all P < 0.05). Subgroup analysis by country indicated that the MTHFR 677 C>T polymorphism may be the main risk factor for DPN in Turkey under four genetic models. ACE D>I mutation was correlated with DPN in Japanese and Pakistani populations in the majority of groups. The relationships of MTHFR 677 C>T and ACE I/D polymorphisms with DPN patients presented in this meta-analyses support the view that the MTHFR and ACE genes might play an important role in the development of DPN.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Yan Han
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qiang Hu
- Department of Psychology, Qiqihar Mental Health Center, Qiqihar, 161000, China
| | - Xiaojie Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar, 161000, China
| | - Guangcheng Cui
- Mental Health Institute, Qiqihar Medical University, Qiqihar, 161000, China
| | - Zezhi Li
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yangtai Guan
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
7
|
Politi C, Ciccacci C, D'Amato C, Novelli G, Borgiani P, Spallone V. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res Clin Pract 2016; 120:198-208. [PMID: 27596057 DOI: 10.1016/j.diabres.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/24/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023]
Abstract
Diabetic polyneuropathy and cardiovascular autonomic neuropathy are common and disabling complications of diabetes. Although glycaemic control and cardiovascular risk factors are major contributory elements in its development, diabetic neuropathy recognizes a multifactorial influence and a multiplicity of pathogenetic mechanisms. Thus genetic and environmental factors may contribute to its susceptibility, each with a modest contribution, by targeting various metabolic and microvascular pathways whose alterations intervene in diabetic neuropathy pathogenesis. This review is aimed at describing major data from the available literature regarding genetic susceptibility to diabetic neuropathies. It provides an overview of the genes reported as associated with the development or progression of these complications, i.e. ACE, MTHFR, GST, GLO1, APOE, TCF7L2, VEGF, IL-4, GPX1, eNOS, ADRA2B, GFRA2, MIR146A, MIR128A. The identification of genetic susceptibility can help in both expanding the comprehension of the pathogenetic mechanisms of diabetic nerve damage and identifying biomarkers of risk prediction and response to therapeutic intervention.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy.
| | - Vincenza Spallone
- Department of Systems Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Lu J, Luo Y, Wang J, Hu C, Zhang R, Wang C, Jia W. Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes. J Diabetes Investig 2016; 8:115-120. [PMID: 27253191 PMCID: PMC5217885 DOI: 10.1111/jdi.12546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022] Open
Abstract
Aims/Introduction Previous studies have suggested a possible relationship between type 2 diabetes mellitus susceptibility loci and diabetic complications. The present study aimed to investigate the associations between type 2 diabetes mellitus loci with peripheral nerve function in a Chinese population with type 2 diabetes mellitus. Materials and Methods A total of 1,900 type 2 diabetes mellitus patients were recruited in the study. We selected ten single nucleotide polymorphisms (SNPs) from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese patients. Genotyping was carried out by using a MassARRAY Compact Analyzer. Peripheral nerve function was evaluated by nerve conduction studies in all participants. The composite Z‐scores for nerve conduction parameters including conduction velocity (CV), amplitude and latency were calculated, respectively. Results Rs5219 of KCNJ11 (E23K, G→A) was identified to be associated with all the parameters obtained from nerve conduction studies (Z‐score of CV: β = 0.113, P = 0.01; Z‐score of amplitude: β = 0.133, P = 0.01; Z‐score of latency: β = −0.116, P = 0.01) after adjustment for covariates including age, duration and glycated hemoglobin. Specifically, each copy of the A allele was related to better outcomes. CDKAL1 rs7756992 and TCF7L2 rs7903146 correlated with the composite Z‐score of amplitude (P = 0.028 and P = 0.016, respectively), but not CV (P = 0.393 and P = 0.281, respectively) or latency (P = 0.286 and P = 0.273, respectively). There were no significant associations between the other seven SNPs and peripheral nerve function. Conclusions Rs5219 at KCNJ11 (E23K) was associated with peripheral nerve function in a Chinese population with type 2 diabetes mellitus, suggesting shared genetic factors for type 2 diabetes mellitus and diabetic polyneuropathy in this population.
Collapse
Affiliation(s)
- Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Yi Luo
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| |
Collapse
|
9
|
Li Y, Tong N. Angiotensin-converting enzyme I/D polymorphism and diabetic peripheral neuropathy in type 2 diabetes mellitus: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2015; 16:787-792. [PMID: 25143334 DOI: 10.1177/1470320314539828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several molecular epidemiological studies have been conducted to examine the association between angiotensin-converting enzyme (ACE) I/D polymorphism and diabetic peripheral neuropathy (DPN) risk. However, the conclusions remained controversial. We therefore performed this meta-analysis. METHODS PubMed and EMBASE were searched to identify case-control studies investigating the associations of ACE I/D polymorphism with risk of DPN. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association between ACE I/D polymorphism and risk of DPN. RESULTS A total of seven case-control studies including 1316 cases and 1617 controls were included. ACE I/D polymorphism was associated with a significantly increased risk of DPN (OR=1.46, 95%CI 1.11-1.92, p=0.006, I(2)=48%). This result remained statistically significant when the adjusted ORs were combined (OR=1.84, 95%CI 1.14-2.99, p=0.01, I(2)=53%). In the subgroup of ethnicity, a significantly elevated risk was observed in Caucasians (OR=1.32, 95%CI 1.10-1.59, p=0.003, I(2)=43%). CONCLUSIONS Our meta-analysis confirmed that ACE I/D polymorphism was associated with the risk of DPN.
Collapse
Affiliation(s)
- Yao Li
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Nanwei Tong
- Department of Endocrinology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
10
|
Settin A, El-Baz R, Ismaeel A, Tolba W, Allah WA. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: Susceptibility and complications. J Renin Angiotensin Aldosterone Syst 2015; 16:838-843. [PMID: 24452036 DOI: 10.1177/1470320313516172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HYPOTHESIS/INTRODUCTION Polymorphisms of angiotensin converting enzyme (ACE) and methylene-tetrahydrofolate reductase (MTHFR) genes have been proposed to be associated with type 2 diabetes mellitus (T2DM) with conflicting results. This work was planned in order to check for the association of these polymorphisms with the susceptibility for and complications of T2DM among Egyptian cases. MATERIALS AND METHODS This is a case controlled study involving 203 patients with T2DM and 311 healthy controls. Polymorphic variants of ACE I>D and MTHFR (677 C>T and 1298 A>C) were determined using the polymerase chain reaction (PCR) restriction analysis technique. RESULTS The susceptibility to T2DM was higher among subjects having the MTHFR 677TT (odds ratio (OR)=2.2, p=0.01), MTHFR 1298 AA (OR=1.84, p=0.001) and ACE (ID+II) (OR=2.0, p=0.0007) genotypes. Logistic regression analysis showed that MTHFR 677T allele was a risk factor for diabetic retinopathy (DR) (OR=3.47, p<0.001), diabetic polyneuropathy (DPN) (OR=5.2, p<0.0001) and ischemic heart disease (IHD) (OR=2.9, p<0.05), while MTHFR 1298 C allele was a risk factor for DR (OR=4.2, p<0.001) and the ACE DD genotype was a risk factor for DPN (OR=3.1, p<0.001). CONCLUSIONS The MTHFR 677 TT genotype was associated with T2DM susceptibility and complications (DR, DPN and IHD). The MTHFR 1298 CC, AC and ACE DD genotypes were associated with DR and DPN.
Collapse
Affiliation(s)
| | | | | | - Wafaa Tolba
- Zoology Department, Mansoura University, Egypt
| | | |
Collapse
|
11
|
Wu S, Han Y, Hu Q, Zhang XJ, Cui GC, Li ZZ, Guan YT. RETRACTED ARTICLE: Effects of Common Polymorphisms in the MTHFR and ACE Genes on Diabetic Peripheral Neuropathy Progression: a Meta-Analysis. Mol Neurobiol 2015; 52:1885-1885. [DOI: 10.1007/s12035-014-8976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ybarra-Muñoz J, Jurado-Campos J, Garcia-Gil M, Zabaleta-Del-Olmo E, Mir-Coll T, Zabalegui A, Vidal J, Romeo JH. Cardiovascular disease predicts diabetic peripheral polyneuropathy in subjects with type 2 diabetes: A 10-year prospective study. Eur J Cardiovasc Nurs 2014; 15:248-54. [PMID: 25527522 DOI: 10.1177/1474515114565215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/03/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND The relationship between cardiovascular disease and diabetic peripheral neuropathy is mainly sustained by data retrieved from cross-sectional studies focused on cardiovascular risk factors. We aimed to assess the presence of cardiovascular disease as a risk factor for developing diabetic peripheral neuropathy in a type 2 diabetes mellitus population. METHOD A 10-year prospective, primary care, multicentre study in a randomly selected cohort. Cardiovascular disease presence included stroke, coronary artery disease and/or peripheral ischaemia. Diabetic peripheral neuropathy diagnosis was based on clinical neurological examination as well as the neuropathy symptoms score and nerve conduction studies. RESULTS Three hundred and ten (N=310) patients were initially recruited. Two-hundred and sixty seven (N=267) patients were included in the study. Diabetic peripheral neuropathy cumulative incidence was 18.3% (95% confidence intervals 14.1-23.4; N=49). Diabetic peripheral neuropathy development was significantly more frequent in participants presenting with cardiovascular disease at baseline (P=0.01). In the final logistic regression analysis, the presence of cardiovascular disease remained associated with an increased risk for diabetic peripheral neuropathy (odds ratio 2.32, 95% confidence intervals 1.03-5.22) in addition to diabetes duration and low density lipoprotein-cholesterol levels. CONCLUSIONS In our series, type 2 diabetes mellitus patients with cardiovascular disease at baseline present with an increased risk of developing diabetic peripheral neuropathy at 10 years of follow-up. Our results suggest that measures aimed at the prevention, control and treatment of cardiovascular disease can also help prevent diabetic peripheral neuropathy development.
Collapse
Affiliation(s)
| | - Jeronimo Jurado-Campos
- Institut Universitari d'Investigació en Atenció Primaria (IDIAP) Jordi Gol, Spain Institut Catala de la Salut, Girona, Spain
| | - Maria Garcia-Gil
- Institut Universitari d'Investigació en Atenció Primaria (IDIAP) Jordi Gol, Spain
| | - Edurne Zabaleta-Del-Olmo
- Institut Universitari d'Investigació en Atenció Primaria (IDIAP) Jordi Gol, Spain Universitat Autònoma de Barcelona, Spain
| | | | | | - Josep Vidal
- Endocrinology Department, Hospital Clinic of Barcelona, Spain
| | - June H Romeo
- Cleveland Clinic/Medina Hospital, Heart Failure Clinic, USA
| |
Collapse
|
13
|
Ciccacci C, Morganti R, Di Fusco D, D'Amato C, Cacciotti L, Greco C, Rufini S, Novelli G, Sangiuolo F, Marfia GA, Borgiani P, Spallone V. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 2014; 51:663-71. [PMID: 24682535 DOI: 10.1007/s00592-014-0582-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022]
Abstract
Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) are common type 2 diabetes complications with a large inter-individual variability in terms of clinical manifestations and severity. Our aim was to evaluate a possible involvement of genetic polymorphisms in miRNA regions in the susceptibility to DPN and CAN. Nine polymorphisms in miRNA genes were studied in a sample of 132 type 2 diabetes patients (T2D) analysed for DPN and 128 T2D patients analysed for CAN. A genotype-phenotype correlation analysis was performed. The T allele of rs11888095 single nucleotide polymorphism (SNP) in MIR128a was significantly associated with a higher risk (ORadj = 4.89, P adj = 0.02), whereas the C allele of rs2910164 SNP in MIR146a was associated with a lower risk to develop DPN (ORadj = 0.49, P adj = 0.09), respectively. A multivariate logistic regression analysis confirmed that both SNPs contribute to DPN (p < 0.001 and p = 0.01 for MIR128a and MIR146a, respectively). MIR128a SNP significantly contributed also to DPN score (p = 0.026). Rs895819 SNP in MIR27a was significantly associated with a higher risk to develop early CAN (P adj = 0.023 and ORadj = 3.43). The rs2910164 SNP in MIR146a showed a protective effect respect to early CAN (P adj = 0.052, ORadj = 0.32) and to confirmed CAN (P adj = 0.041, ORadj = 0.13). The same SNP resulted significantly associated with a lower CAN score and a higher E/I (p = 0.002 and p = 0.003, respectively). In conclusion, we described associations of MIR128a and MIR146a SNPs with DPN susceptibility and of MIR146a and MIR27a SNPs with CAN susceptibility. This is the first study showing that genetic variability in miRNA genes could be involved in diabetic neuropathies susceptibility.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Genetics Section, Department of Biomedicine and Prevention, University of Rome ''Tor Vergata'', Via Montpellier 1, 00133, Rome, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The importance of association between angiotensin-converting enzyme (ACE) Gene I/D polymorphism and diabetic peripheral neuropathy. Gene 2013; 530:253-6. [DOI: 10.1016/j.gene.2013.07.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 01/04/2023]
|
15
|
Martini S, Nair V, Patel SR, Eichinger F, Nelson RG, Weil EJ, Pezzolesi MG, Krolewski AS, Randolph A, Keller BJ, Werner T, Kretzler M. From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 2013; 62:2605-12. [PMID: 23434934 PMCID: PMC3712052 DOI: 10.2337/db12-1416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genome-wide association studies have proven to be highly effective at defining relationships between single nucleotide polymorphisms (SNPs) and clinical phenotypes in complex diseases. Establishing a mechanistic link between a noncoding SNP and the clinical outcome is a significant hurdle in translating associations into biological insight. We demonstrate an approach to assess the functional context of a diabetic nephropathy (DN)-associated SNP located in the promoter region of the gene FRMD3. The approach integrates pathway analyses with transcriptional regulatory pattern-based promoter modeling and allows the identification of a transcriptional framework affected by the DN-associated SNP in the FRMD3 promoter. This framework provides a testable hypothesis for mechanisms of genomic variation and transcriptional regulation in the context of DN. Our model proposes a possible transcriptional link through which the polymorphism in the FRMD3 promoter could influence transcriptional regulation within the bone morphogenetic protein (BMP)-signaling pathway. These findings provide the rationale to interrogate the biological link between FRMD3 and the BMP pathway and serve as an example of functional genomics-based hypothesis generation.
Collapse
Affiliation(s)
- Sebastian Martini
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Viji Nair
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Sanjeevkumar R. Patel
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Felix Eichinger
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - E. Jennifer Weil
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Marcus G. Pezzolesi
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts
| | | | - Ann Randolph
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Benjamin J. Keller
- Department of Computer Science, Eastern Michigan University, Ypsilanti, Michigan
| | - Thomas Werner
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
- Genomatix Software GmbH, Munich, Germany
| | - Matthias Kretzler
- Departments of Internal Medicine and Nephrology, University of Michigan, Ann Arbor, Michigan
- Corresponding author: Matthias Kretzler,
| |
Collapse
|
16
|
High association of IL-4 gene intron 3 VNTR polymorphism with diabetic peripheral neuropathy. J Mol Neurosci 2013; 51:437-41. [PMID: 23771787 DOI: 10.1007/s12031-013-0048-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common disease. It is one of the late complications of diabetes mellitus. DPN can lower the quality of life by causing severe painful clinic symptoms. The aim of this study is to evaluate interleukin (IL)-4 gene variable number of tandem repeat (VNTR) polymorphism on DPN in Turkish population. Two hundred and twenty-seven DPN patients and 241 controls were enrolled in this study. Genomic DNA was isolated and genotyped using polymerase chain reaction analyses for the IL-4 gene intron 3 VNTR polymorphism. The distribution of genotype frequencies of IL-4 gene intron 3 VNTR polymorphism was statistically different between DPN patients and control group (p = 0.001). The frequency of P1 and P2 alleles was statistically different between DPN patients and control group (p = 0.00009). The results of this study suggested that intron 3 VNTR polymorphism of the IL-4 gene plays an important role in the occurrence of DPN in the Turkish population.
Collapse
|