1
|
Guerra-Ojeda S, Jorda A, Aldasoro C, Vila JM, Valles SL, Arias-Mutis OJ, Aldasoro M. Improvement of Vascular Insulin Sensitivity by Ranolazine. Int J Mol Sci 2023; 24:13532. [PMID: 37686345 PMCID: PMC10487645 DOI: 10.3390/ijms241713532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Ranolazine (RN) is a drug used in the treatment of chronic coronary ischemia. Different clinical trials have shown that RN behaves as an anti-diabetic drug by lowering blood glucose and glycosylated hemoglobin (HbA1c) levels. However, RN has not been shown to improve insulin (IN) sensitivity. Our study investigates the possible facilitating effects of RN on the actions of IN in the rabbit aorta. IN induced vasodilation of the abdominal aorta in a concentration-dependent manner, and this dilatory effect was due to the phosphorylation of endothelial nitric oxide synthase (eNOS) and the formation of nitric oxide (NO). On the other hand, IN facilitated the vasodilator effects of acetylcholine but not the vasodilation induced by sodium nitroprusside. RN facilitated all the vasodilatory effects of IN. In addition, IN decreased the vasoconstrictor effects of adrenergic nerve stimulation and exogenous noradrenaline. Both effects were in turn facilitated by RN. The joint effect of RN with IN induced a significant increase in the ratio of p-eNOS/eNOS and pAKT/AKT. In conclusion, RN facilitated the vasodilator effects of IN, both direct and induced, on the adrenergic system. Therefore, RN increases vascular sensitivity to IN, thus decreasing tissue resistance to the hormone, a key mechanism in the development of type II diabetes.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| | - Adrian Jorda
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
- Department of Nursing and Podiatry, University of Valencia, 46010 València, Spain
| | - Constanza Aldasoro
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| | - Jose M. Vila
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| | - Soraya L. Valles
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| | - Oscar J Arias-Mutis
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| | - Martin Aldasoro
- Department of Physiology, University of Valencia, 46010 València, Spain; (S.G.-O.); (A.J.); (C.A.); (J.M.V.); (S.L.V.); (O.J.A.-M.)
| |
Collapse
|
3
|
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and the predominant cause of heart attack and ischemic stroke. Despite the well-known sexual dimorphism in the incidence and complications of atherosclerosis, there are relatively limited data in the clinical and preclinical literature to rigorously address mechanisms underlying sex as a biological variable in atherosclerosis. In multiple histological and imaging studies, overall plaque burden and markers of inflammation appear to be greater in men than women and are predictive of cardiovascular events. However, while younger women are relatively protected from cardiovascular disease, by the seventh decade, the incidence of myocardial infarction in women ultimately surpasses that of men, suggesting an interaction between sex and age. Most preclinical studies in animal atherosclerosis models do not examine both sexes, and even in those that do, well-powered direct statistical comparisons for sex as an independent variable remain rare. This article reviews the available data. Overall, male animals appear to have more inflamed yet smaller plaques compared to female animals. Plaque inflammation is often used as a surrogate end point for plaque vulnerability in animals. The available data support the notion that rather than plaque size, plaque inflammation may be more relevant in assessing sex-specific mechanisms since the findings correlate with the sex difference in ischemic events and mortality and thus may be more reflective of the human condition. Overall, the number of preclinical studies directly comparing plaque inflammation between the sexes is extremely limited relative to the vast literature exploring atherosclerosis mechanisms. Failure to include both sexes and to address age in mechanistic atherosclerosis studies are missed opportunities to uncover underlying sex-specific mechanisms. Understanding the mechanisms driving sex as a biological variable in atherosclerotic disease is critical to future precision medicine strategies to mitigate what is still the leading cause of death of men and women worldwide.
Collapse
Affiliation(s)
- Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua A. Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
4
|
Yongming P, Zhaowei C, Yichao M, Keyan Z, Liang C, Fangming C, Xiaoping X, Quanxin M, Minli C. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet. Cardiovasc Diabetol 2015; 14:6. [PMID: 25592139 PMCID: PMC4300051 DOI: 10.1186/s12933-014-0165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were fed either a normal diet or an HFC diet for 24 weeks. Thereafter, the minipigs were tested for physiological and biochemical blood indices, blood pressure, cardiac function, glucose tolerance, heart rate variability (HRV), and PPAR-associated gene and protein expression levels. Results HFC-fed minipigs exhibited IR through increased body weight, fasting blood glucose levels, plasma cholesterol and its composition, and insulin and free fatty acid (FFA) levels; decreased insulin sensitivity; impaired glucose tolerance; and hypertension. Increased C-reactive protein (CRP) levels, cardiac dysfunction, depressed HRV, and the up-regulation of PPAR expression in the abdominal aorta concomitant with down-regulation in the heart tissue were observed in HFC-fed minipigs. Furthermore, the levels of NF-κBp65, IL-1β, TNF-α, MCP-1, VCAM-1, ICAM-1, MMP-9, and CRP proteins were also significantly increased. Conclusions These data suggest that HFC-fed Tibetan minipigs develop IR and AS and that PPARs are involved in cardiovascular remodeling and impaired function.
Collapse
Affiliation(s)
- Pan Yongming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Cai Zhaowei
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Yichao
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Zhu Keyan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Liang
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Fangming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Xu Xiaoping
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Quanxin
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Minli
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
6
|
Abstract
The prevalence of obesity has increased remarkably in the past four decades. Because obesity can promote the development of type 2 diabetes and cardiovascular disease, understanding the mechanisms that engender weight gain and discovering safe antiobesity therapies are of critical importance. In particular, the gaseous signaling molecule, nitric oxide (NO), appears to be a central factor regulating adiposity and systemic metabolism. Obese and diabetic states are characterized by a deficit in bioavailable NO, with such decreases commonly attributed to downregulation of endothelial NO synthase (eNOS), loss of eNOS activity, or quenching of NO by its reaction with oxygen radicals. Gain-of-function studies, in which vascular-derived NO has been increased pharmacologically or genetically, reveal remarkable actions of NO on body composition and systemic metabolism. This review addresses the metabolic actions of eNOS and the potential therapeutic utility of harnessing its antiobesogenic effects.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, Louisville, Kentucky, USA; Department of Physiology and Biophysics, Louisville, Kentucky, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|