1
|
Bernard M, Kober F. Editorial for "Coronary Microvascular Dysfunction and Diffuse Myocardial Fibrosis in Patients with Type 2 Diabetes Using Quantitative Perfusion MRI". J Magn Reson Imaging 2024; 60:2407-2408. [PMID: 38454884 DOI: 10.1002/jmri.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
| | - Frank Kober
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| |
Collapse
|
2
|
Tanigaki T, Kato S, Azuma M, Ito M, Horita N, Utsunomiya D. Coronary flow reserve evaluated by phase-contrast cine cardiovascular magnetic resonance imaging of coronary sinus: a meta-analysis. J Cardiovasc Magn Reson 2023; 25:11. [PMID: 36805689 PMCID: PMC9940433 DOI: 10.1186/s12968-023-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/05/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Phase-contrast cine cardiovascular magnetic resonance (CMR) of the coronary sinus has emerged as a non-invasive method for measuring coronary sinus blood flow and coronary flow reserve (CFR). However, its clinical utility has not yet been established. Here we performed a meta-analysis to clarify the clinical value of CMR-derived CFR in various cardiovascular diseases. METHODS An electronic database search was performed of PubMed, Web of Science Core Collection, Cochrane Advanced Search, and EMBASE. We compared the CMR-derived CFR of various cardiovascular diseases (stable coronary artery disease [CAD], hypertrophic cardiomyopathy [HCM], dilated cardiomyopathy [DCM]) and control subjects. We assessed the prognostic value of CMR-derived CFR for predicting major adverse cardiac events (MACE) in patients with stable CAD. RESULTS A total of 47 eligible studies were identified. The pooled CFR from our meta-analysis was 3.48 (95% confidence interval [CI], 2.98-3.98) in control subjects, 2.50 (95% CI, 2.38-2.61) in stable CAD, 2.01 (95% CI, 1.70-2.32) in cardiomyopathies (HCM and DCM). The meta-analysis showed that CFR was significantly reduced in stable CAD (mean difference [MD] = -1.48; 95% CI, -1.78 to -1.17; p < 0.001; I2 = 0%; p for heterogeneity = 0.33), HCM (MD = -1.20; 95% CI, -1.63 to -0.77; p < 0.001; I2 = 0%; p for heterogeneity = 0.49), and DCM (MD = -1.53; 95% CI, -1.93 to -1.13; p < 0.001; I2 = 0%; p for heterogeneity = 0.45). CMR-derived CFR was an independent predictor of MACE for patients with stable CAD (hazard ratio = 0.52 per unit increase; 95% CI, 0.37-0.73; p < 0.001; I2 = 84%, p for heterogeneity < 0.001). CONCLUSIONS CMR-derived CFR was significantly decreased in cardiovascular diseases, and a decreased CFR was associated with a higher occurrence of MACE in patients with stable CAD. These results suggest that CMR-derived CFR has potential for the pathological evaluation of stable CAD, cardiomyopathy, and risk stratification in CAD.
Collapse
Affiliation(s)
- Toshiki Tanigaki
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Masanori Ito
- Department of Diagnostic Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Wamil M, Goncalves M, Rutherford A, Borlotti A, Pellikka PA. Multi-modality cardiac imaging in the management of diabetic heart disease. Front Cardiovasc Med 2022; 9:1043711. [DOI: 10.3389/fcvm.2022.1043711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic heart disease is a major healthcare problem. Patients with diabetes show an excess of death from cardiovascular causes, twice as high as the general population and those with diabetes type 1 and longer duration of the disease present with more severe cardiovascular complications. Premature coronary artery disease and heart failure are leading causes of morbidity and reduced life expectancy. Multimodality cardiac imaging, including echocardiography, cardiac computed tomography, nuclear medicine, and cardiac magnetic resonance play crucial role in the diagnosis and management of different pathologies included in the definition of diabetic heart disease. In this review we summarise the utility of multi-modality cardiac imaging in characterising ischaemic and non-ischaemic causes of diabetic heart disease and give an overview of the current clinical practice. We also describe emerging imaging techniques enabling early detection of coronary artery inflammation and the non-invasive characterisation of the atherosclerotic plaque disease. Furthermore, we discuss the role of MRI-derived techniques in studying altered myocardial metabolism linking diabetes with the development of diabetic cardiomyopathy. Finally, we discuss recent data regarding the use of artificial intelligence applied to large imaging databases and how those efforts can be utilised in the future in screening of patients with diabetes for early signs of disease.
Collapse
|
4
|
Marwick TH, Gimelli A, Plein S, Bax JJ, Charron P, Delgado V, Donal E, Lancellotti P, Levelt E, Maurovich-Horvat P, Neubauer S, Pontone G, Saraste A, Cosyns B, Edvardsen T, Popescu BA, Galderisi M, Derumeaux G, Bäck M, Bertrand PB, Dweck M, Keenan N, Magne J, Neglia D, Stankovic I. Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2022; 23:e62-e84. [PMID: 34739054 DOI: 10.1093/ehjci/jeab220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Heart failure (HF) is among the most important and frequent complications of diabetes mellitus (DM). The detection of subclinical dysfunction is a marker of HF risk and presents a potential target for reducing incident HF in DM. Left ventricular (LV) dysfunction secondary to DM is heterogeneous, with phenotypes including predominantly systolic, predominantly diastolic, and mixed dysfunction. Indeed, the pathogenesis of HF in this setting is heterogeneous. Effective management of this problem will require detailed phenotyping of the contributions of fibrosis, microcirculatory disturbance, abnormal metabolism, and sympathetic innervation, among other mechanisms. For this reason, an imaging strategy for the detection of HF risk needs to not only detect subclinical LV dysfunction (LVD) but also characterize its pathogenesis. At present, it is possible to identify individuals with DM at increased risk HF, and there is evidence that cardioprotection may be of benefit. However, there is insufficient justification for HF screening, because we need stronger evidence of the links between the detection of LVD, treatment, and improved outcome. This review discusses the options for screening for LVD, the potential means of identifying the underlying mechanisms, and the pathways to treatment.
Collapse
Affiliation(s)
- Thomas H Marwick
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Alessia Gimelli
- Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Center & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Phillippe Charron
- Sorbonne Université, INSERM UMRS 1166 and ICAN Institute, Paris, France
- APHP, Centre de référence pour les maladies cardiaques héréditaires ou rares, Hôpital Pitié-Salpêtrière, Paris, France
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Erwan Donal
- Service de Cardiologie Et Maladies Vasculaires Et CIC-IT 1414, CHU Rennes, 35000 Rennes, France
- Université de Rennes 1, LTSI, 35000 Rennes, France
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU SartTilman, Liège, Belgium
- Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Eylem Levelt
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital , Groby Road, Leicester LE3 9QF, UK
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, 2 Koranyi u., 1083 Budapest, Hungary
| | - Stefan Neubauer
- Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, University of Milan, Cardiovascular Imaging, Milan, Italy
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, 109 Laarbeeklaan, Brussels 1090, Belgium
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway
- Institute for clinical medicine, University of Oslo, Sognsvannsveien 20, NO-0424 Oslo, Norway
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Genevieve Derumeaux
- IMRB - Inserm U955 Senescence, metabolism and cardiovascular diseases 8, rue du Général Sarrail, 94010 Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|