1
|
Cinakova A, Vavrincova-Yaghi D, Krenek P, Klimas J, Kralova E. Combination of dapagliflozin and pioglitazone lacks superiority against monotherapy in streptozotocin-induced nephropathy. Sci Rep 2025; 15:1464. [PMID: 39789116 PMCID: PMC11718164 DOI: 10.1038/s41598-024-84487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model. Diabetes was induced in Wistar rats using streptozotocin (55 mg/kg, i.p.). The rats received daily chow containing dapagliflozin (10 mg/kg), pioglitazone (12 mg/kg) or their combination. Six weeks after STZ administration, histological and molecular analyses were performed in excised kidneys. STZ-induced DN was demonstrated by the propagation of apoptotic (Bax, p53, Casp3) and oxidative reactions (Gp91phox, MnSOD) and disrupted nitric oxide signalling (eNOS, Hsp90, Cav1). Kidney damage molecule expression (Kim1, Nphs1) revealed a deceleration of kidney damage by pioglitazone and dapagliflozine monotherapies. The monotherapy also reduced apoptosis, oxidative stress, and partially restored NO signalling. The combined therapy ameliorated glomerulosclerosis but in other measured parameters, it reached the effect of the monotherapies except for Hsp90 expression modulation. Both dapagliflozin and pioglitazone exert protective character in kidneys when used in monotherapy. The combined therapy does not exhibit an expected additive effect within modulating oxidative stress, NO signalling or apoptosis.
Collapse
Affiliation(s)
- Aneta Cinakova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Diana Vavrincova-Yaghi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Peter Krenek
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Jan Klimas
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia
| | - Eva Kralova
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
| |
Collapse
|
2
|
da Rocha GHO, Müller C, Przybylski-Wartner S, Schaller H, Riemschneider S, Lehmann J. AhR-Induced Anti-Inflammatory Effects on a Caco-2/THP-1 Co-Culture Model of Intestinal Inflammation Are Mediated by PPARγ. Int J Mol Sci 2024; 25:13072. [PMID: 39684781 DOI: 10.3390/ijms252313072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor γ (PPARγ) are ligand-activated transcription factors that have in recent years been investigated for their anti-inflammatory properties for treatment of inflammatory bowel diseases (IBDs). These are globally prevalent chronic maladies of the gut that lack cost-efficient therapeutical options capable of inducing long-term remission. In the present study, we used an in vitro Transwell® co-culture model composed of Caco-2 epithelial cells in the apical compartment and lipopolysaccharide-treated (LPS) THP-1 macrophages in the basolateral compartment. Secretion of cytokines, disruption of epithelial integrity, and expression of surface markers and junctional proteins were assessed in order to investigate interactions between AhR and PPARγ on the ligand-elicited effects on the control of inflammation. The results revealed that the potent AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ) attenuated LPS-induced IL-6 release by macrophages, which then stabilized Caco-2 monolayer permeability by decreasing claudin-2 expression. These effects were disrupted by GW9662 and to some extent by CH223191, inhibitors of PPARγ and AhR, respectively. Our main findings evidence PPARγ might be a downstream regulator of AhR activation essential for its ligand-based anti-inflammatory effects, suggesting it might be employed as either an auxiliary target or as a biomarker of therapeutical efficacy on AhR-based IBD pharmacotherapy.
Collapse
Affiliation(s)
| | - Claudia Müller
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Susanne Przybylski-Wartner
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Heidrun Schaller
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases [CIMD], 04103 Leipzig, Germany
| |
Collapse
|
3
|
Deng X, Zhang Y, He X, Li L, Yue Z, Liang Y, Huang Y. Effects of MMP2 and its inhibitor TIMP2 on DNA damage, apoptosis and senescence of human lens epithelial cells induced by oxidative stress. J Bioenerg Biomembr 2024; 56:619-630. [PMID: 39538054 DOI: 10.1007/s10863-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in pathogenesis of age-related cataract (ARC), causing significant visual impairment. Apoptosis of porcine granulosa cells mediated by MMP2 is linked to DNA damage. The current study aimed to investigate the potential mechanism of MMP2 in DNA damage, apoptosis and senescence of lens epithelial cells caused by oxidative stress. HLE-B3 cells were treated with different doses of H2O2 for 24 h, and CCK-8 was used to detect cell viability. Furthermore, western blotting was used to detect the expressions of MMP2, Bcl2, Bax, cleaved caspase3, γ-H2AX, p16, p21, and TIMP2. DCFH-DA staining was used to assess ROS levels. Moreover, EdU staining was used to detect cell proliferation, and flow cytometry was used to detect cell apoptosis. Then, 15A3 immunofluorescence staining and γ-H2AX staining were used to detect DNA damage. In addition, SA-β-gal staining was used to observe cell senescence. The present findings suggest that oxidative stress triggers damage to LECs viability and elevates the expression of MMP2. Furthermore, MMP2 interference attenuates H2O2-induced active damage, apoptosis, DNA damage, and cellular senescence in LECs. Additionally, TIMP2 expression is down-regulated in H2O2-induced LECs, which suppresses the expression of MMP2 induced by H2O2. These findings highlight the crucial role of MMP2 and TIMP2 in the modulation of oxidative stress-induced cellular responses in LECs. Collectively, TIMP2 alleviates H2O2-induced lens epithelial cell viability damage, apoptosis, DNA damage and cell senescence in LECs by inhibiting MMP2.
Collapse
Affiliation(s)
- Xinran Deng
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Yan Zhang
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Xiwei He
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Li Li
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Zhongbin Yue
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China
| | - Yong Liang
- Pengzhou People's Hospital Ophthalmology Department, Chengdu City, 611930, Sichuan Province, China.
| | - Yue Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
4
|
Mao X, Du Y, Sui R, Yu X, Zhu Y, Huang M. Quercetin conjugated PSC-derived exosomes to inhibit intimal hyperplasia via modulating the ERK, Akt, and NF-κB signaling pathways in the rat carotid artery post balloon injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102763. [PMID: 38897395 DOI: 10.1016/j.nano.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques. The rats were subjected to balloon injury (BI) utilizing a 2-Fr Fogarty arterial embolectomy balloon catheter. Intimal hyperplasia and the degree of VSMC proliferation were evaluated using histological analysis in the rat groups that received a dosage of Q@PSC-E at 30 mg/kg/d. Significantly, Q@PSC-E inhibited cell proliferation through a pathway that does not include lipoxygenase, as demonstrated by [3H] thymidine incorporation, MTT, and flow cytometry studies. Additionally, the data indicate that Q@PSC-E hinders cell proliferation by targeting particular events that promote cell growth, including the activation of Akt and NF-κB, disruption of cell-cycle progression and also obstructs the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Mao
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yaming Du
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Xiaodong Yu
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
5
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar Drugs 2023; 21:433. [PMID: 37623714 PMCID: PMC10455645 DOI: 10.3390/md21080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.
Collapse
Affiliation(s)
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|