1
|
Saskianti T, Purnamasari S, Pradopo S, Nugraha AP, Prahasanti C, Ernawati DS, Kanawa M. The Effect of Mixed Polymethylmethacrylate and Hydroxyapatite on Viability of Stem Cell from Human Exfoliated Deciduous Teeth and Osteoblast. Eur J Dent 2024; 18:314-320. [PMID: 37336482 PMCID: PMC10959596 DOI: 10.1055/s-0043-1768971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVES Stem cell from human exfoliated deciduous teeth (SHED) has great potential for bone tissue engineering and cell therapy for regenerative medicine. It has been combined with biomaterials such as mixed of polymethylmethacrylate (PMMA) and hydroxyapatite (HA) as candidates for synthetic bone graft biomaterial. The aim of this study was to analyze the toxicity test of mixed PMMA-HA scaffold seeded with SHED and osteoblast in vitro. MATERIALS AND METHODS SHED was isolated from the pulp of noncarious deciduous teeth and osteoblast cells were cultured, and exposed to PMMA-HA scaffolds with three concentration groups: 20/80, 30/70, and 40/60 for 24 hours. Cytotoxicity test was performed by MTT assay to cell viability. STATISTICAL ANALYSIS Data were analyzed using IBM SPSS Statistics 25, one-way analysis of variance followed by least significant difference test, considering the level of significance p-value less than 0.05 RESULTS: The percentage of SHED's viability was best in the PMMA-HA group with concentrations of 20/80, followed by 30/70, and 40/60 with 87.03, 75.33, and 65.79%, respectively. The percentage of osteoblast cell's viability was best in the PMMA-HA group with concentrations of 20/80, followed by 30/70, and 40/60 with 123.6, 108.36, and 93.48%, respectively. CONCLUSIONS Mixed PMMA-HA was not toxic for the SHED and osteoblast. This characteristic is the initial requirement to be proposed as an alternative material for healing alveolar bone defects. In vivo animal research is mandatory to confirm the use of PMMA-HA on the alveolar defect model.
Collapse
Affiliation(s)
- Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shinta Purnamasari
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Seno Pradopo
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Chiquita Prahasanti
- Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Wu Y, Gong P. Scopolamine regulates the osteogenic differentiation of human periodontal ligament stem cells through lactylation modification of RUNX2 protein. Pharmacol Res Perspect 2024; 12:e1169. [PMID: 38258916 PMCID: PMC10804664 DOI: 10.1002/prp2.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells contributing to regenerating lost periodontal tissues and repairing bone defects. Studies on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The focus of the current study is on unveiling the role of SCO-mediated molecular mechanism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we determined that SCO induced the PDLSCs osteogenic differentiation, according to data of ALP activity measurement and ARS staining. Mechanistically, we performed western blot and identified that SCO could promote the lactylation of runt-related transcription factor 2 (RUNX2). We also found through rescue assays that knockdown of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentiation of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.
Collapse
Affiliation(s)
- Ying Wu
- Department of PeriodonticsAffiliated Stomatology Hospital of Guangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Pan Gong
- Department of StomatologyAffiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Ding Z, Peng Q, Zuo J, Wang Y, Zhou H, Tang Z. Osteogenesis Performance of Boronized Ti6Al4V/HA Composites Prepared by Microwave Sintering: In Vitro and In Vivo Studies. MATERIALS 2022; 15:ma15144985. [PMID: 35888453 PMCID: PMC9321446 DOI: 10.3390/ma15144985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Abstract
The boronized Ti6Al4V/HA composite is deemed to be an important biomaterial because of its potential remarkable mechanical and biological properties. This paper reports the osteogenesis performance of the boronized Ti6Al4V/HA composite, which was prepared by microwave sintering of powders of Ti6Al4V, hydroxyapatite (HA), and TiB2 in high-purity Ar gas at 1050 °C for 30 min, as dental implant based on both cell experiments in vitro and animal experiments in vivo. The comparison between the boronized Ti6Al4V/HA composite and Ti, Ti6Al4V, and boronized Ti6Al4V in the terms of adhesion, proliferation, alkaline phosphate (ALP) activity, and mineralization of MG-63 cells on their surfaces confirmed that the composite exhibited the best inductive osteogenesis potential. It exerted a more significant effect on promoting the early osteogenic differentiation of osteoblasts and exhibited the maximum optical density (OD) value in the MTT assay and the highest levels of ALP activity and mineralization ability, primarily ascribed to its bioactive HA component, porous structure, and relatively rough micro-morphology. The in vivo study in rabbits based on the micro-computed tomography (micro-CT) analysis, histological and histomorphometric evaluation, and biomechanical testing further confirmed that the boronized Ti6Al4V/HA composite had the highest new bone formation potential and the best osseointegration property after implantation for up to 12 weeks, mainly revealed by the measured values of bone volume fraction, bone implant contact, and maximum push-out force which, for example, reached 48.64%, 61%, and 150.3 ± 6.07 N at the 12th week. Owing to these inspiring features, it can serve as a highly promising dental implant.
Collapse
Affiliation(s)
- Zhenyu Ding
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Correspondence: ; Tel.: +86-731-8481-2058
| | - Jun Zuo
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Hongbo Zhou
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China; (Z.D.); (J.Z.); (Y.W.); (H.Z.); (Z.T.)
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antimicrobial activity. BIOMATERIALS ADVANCES 2022; 135:212735. [PMID: 35929201 DOI: 10.1016/j.bioadv.2022.212735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022]
Abstract
Developing multifunctional nanostructures that promote bone repair while fighting infection is highly desirable in bone regenerative therapies. Previous efforts have focused on achieving one property or another by altering the chemical makeup of nanostructures or using growth factors or antibiotics. We present nanostructures with several simultaneous functional attributes including positive effects of strontium on bone formation and prevention of osteoclast differentiation along with incorporation of antimicrobial peptides (AMP) to prevent infection. To form these multifunctional nanostructures, mesoporous calcium silicate (CaMSN) was modified with high levels of strontium. For this, CaMSNs were either partially substituted (20 wt% Ca) or completely replaced with strontium (Sr) to form Sr-CaMSN or SrMSN. The mesoporous nature of these bioactive silicate nanostructures rendered a configuration for substantial AMP loading as well as their effective delivery. The physico-chemical and structural characterization of synthesized MSNs confirmed the mesoporous nature of the synthesized MSNs and their total surface area, pore size, pore volume and SBF-mediated bioactivity remained unaltered with the incorporation of Sr. However, biological evaluation confirmed that synthesized SrMSN upregulated osteogenic differentiation of mesenchymal stromal cells and significantly downregulated osteoclast differentiation. Also, the AMP-loaded MSNs prevented formation and growth of methicillin resistant Staphylococcus aureus (MRSA) biofilms. Thus, high Sr-containing AMP-loaded SrMSNs may combat MRSA-associated infection while promoting bone regeneration. The controlled availability of therapeutic Sr and AMP release as SrMSN degrade enables its potential application in bone tissue regeneration.
Collapse
|
5
|
Pedrosa MDS, Vilela HDS, Rahhal JG, Bueno NP, Lima FS, Nogueira FN, Sipert CR. Response of periodontal ligament stem cells to lipopolysaccharide and calcium silicate-based materials. Braz Dent J 2022; 33:73-82. [PMID: 35508039 PMCID: PMC9645152 DOI: 10.1590/0103-6440202204659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to assess the in vitro response of human periodontal ligament stem cells (hPDLSCs) to bacterial lipopolysaccharide (LPS) activation and application of three calcium silicate-based materials (CSBM): Bio-C Sealer, MTA Fillapex and Cimmo HP. Characterization of the CSBM was performed by FTIR (n = 3). Extracts of Bio-C Sealer, MTA Fillapex and Cimmo HP were prepared and diluted (1:1, 1:4 and 1:16). Culture of hPDLSCs was established and treated or not with LPS from Escherichia coli (1 µg/mL) for 7 days. MTT assay was used to assess cell viability at 24, 48 and 72 h (n = 9). Alkaline phosphatase (ALP) activity was indirectly assayed at day 7 (n = 5). TNF-α and Il -1 0 cytokines were quantified by ELISA at 24h-cell supernatants (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). The cell viability of the LPS-activated hPDLSCs were higher than untreated control (p < 0.05). The application of CSBM affected the cell viability of untreated and LPS-activated cells (p < 0.05). ALP activity was higher for Bio-C Sealer and Cimmo HP in untreated and LPS-activated cells, respectively (p < 0.05). Application of CSBM normalized the TNF-α secretion in the LPS-activated cells (p < 0.05). Only MTA Fillapex in untreated hPDLSCs presented higher values of Il -1 0 (p < 0.05). Taken collectively, the results suggests that the simulation of the inflammatory process by LPS affect the in vitro response the hPDLSCs to the application of the CSBM.
Collapse
Affiliation(s)
- Marlus da Silva Pedrosa
- University of São Paulo - USP, School of Dentistry, Department of
Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Handially dos Santos Vilela
- University of São Paulo - USP, School of Dentistry, Department of
Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Juliana Garuba Rahhal
- University of São Paulo - USP, School of Dentistry, Department of
Restorative Dentistry, São Paulo, SP, Brazil
| | - Natália Pieretti Bueno
- University of São Paulo- USP, School of Dentistry, Department of
Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP,
Brazil
| | - Fabianne Soares Lima
- University of São Paulo - USP, School of Dentistry, Department of
Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Fernando Neves Nogueira
- University of São Paulo - USP, School of Dentistry, Department of
Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- University of São Paulo - USP, School of Dentistry, Department of
Restorative Dentistry, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Ye Y, Ke Y, Liu L, Xiao T, Yu J. CircRNA FAT1 Regulates Osteoblastic Differentiation of Periodontal Ligament Stem Cells via miR-4781-3p/SMAD5 Pathway. Stem Cells Int 2021; 2021:5177488. [PMID: 35003269 PMCID: PMC8731273 DOI: 10.1155/2021/5177488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of human periodontal ligament stem cells (PDLSCs) to differentiate into osteoblasts is significant in periodontal regeneration tissue engineering. In this study, we explored the role and mechanism of circRNA FAT1 (circFAT1) in the osteogenic differentiation of human PDLSCs. The proliferation capacity of PDLSCs was evaluated by EdU and CCK-8 assay. The abilities of circFAT1 and miR-4781-3p in regulating PDLSC differentiation were analyzed by western blot, reverse transcription-polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP), and Alizarin red staining (ARS). A nucleocytoplasmic separation experiment was utilized for circFAT1 localization. A dual-luciferase reporter assay confirmed the binding relationship between miR-4781-3p and circFAT1. It was showed that circFAT1 does not affect the proliferation of PDLSCs. The osteogenic differentiation of PDLSCs was benefited from circFAT1, which serves as a miRNA sponge for miR-4781-3p targeting SMAD5. Both knockdown of circFAT1 and overexpression of miR-4781-3p suppressed the osteogenic differentiation of PDLSCs. Thus, circFAT1 might be considered as a potential target of PDLSCs mediated periodontal bone regeneration.
Collapse
Affiliation(s)
- Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tong Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|