1
|
Kadkhoda Z, Motie P, Rad MR, Mohaghegh S, Kouhestani F, Motamedian SR. Comparison of Periodontal Ligament Stem Cells with Mesenchymal Stem Cells from Other Sources: A Scoping Systematic Review of In vitro and In vivo Studies. Curr Stem Cell Res Ther 2024; 19:497-522. [PMID: 36397622 DOI: 10.2174/1574888x17666220429123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The application of stem cells in regenerative medicine depends on their biological properties. This scoping review aimed to compare the features of periodontal ligament stem cells (PDLSSCs) with stem cells derived from other sources. DESIGN An electronic search in PubMed/Medline, Embase, Scopus, Google Scholar and Science Direct was conducted to identify in vitro and in vivo studies limited to English language. RESULTS Overall, 65 articles were included. Most comparisons were made between bone marrow stem cells (BMSCs) and PDLSCs. BMSCs were found to have lower proliferation and higher osteogenesis potential in vitro and in vivo than PDLSCs; on the contrary, dental follicle stem cells and umbilical cord mesenchymal stem cells (UCMSCs) had a higher proliferative ability and lower osteogenesis than PDLSCs. Moreover, UCMSCs exhibited a higher apoptotic rate, hTERT expression, and relative telomerase length. The immunomodulatory function of adipose-derived stem cells and BMSCs was comparable to PDLSCs. Gingival mesenchymal stem cells showed less sensitivity to long-term culture. Both pure and mixed gingival cells had lower osteogenic ability compared to PDLSCs. Comparison of dental pulp stem cells (DPSCs) with PDLSCs regarding proliferation rate, osteo/adipogenesis, and immunomodulatory properties was contradictory; however, in vivo bone formation of DPSCs seemed to be lower than PDLSCs. CONCLUSION In light of the performed comparative studies, PDLSCs showed comparable results to stem cells derived from other sources; however, further in vivo studies are needed to determine the actual pros and cons of stem cells in comparison to each other.
Collapse
Affiliation(s)
- Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parisa Motie
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Rezaei Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hazrati P, Mirtaleb MH, Boroojeni HSH, Koma AAY, Nokhbatolfoghahaei H. Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature. Curr Stem Cell Res Ther 2024; 19:473-496. [PMID: 35984017 DOI: 10.2174/1574888x17666220818103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss. OBJECTIVE This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation. RESULTS AND DISCUSSION Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation. CONCLUSION According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.
Collapse
Affiliation(s)
- Parham Hazrati
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ohori-Morita Y, Niibe K, Limraksasin P, Nattasit P, Miao X, Yamada M, Mabuchi Y, Matsuzaki Y, Egusa H. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:434-449. [PMID: 35267026 PMCID: PMC9052431 DOI: 10.1093/stcltm/szab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kunimichi Niibe
- Corresponding authors: Kunimichi Niibe, DDS, PhD, Associate Professor, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city, Miyagi 980-8575, Japan. Tel: +81-22-717-8363; Fax: +81-22-717-8367;
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Praphawi Nattasit
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Xinchao Miao
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Hiroshi Egusa, DDS, PhD, Director, Center for Advanced Stem Cell and Regenerative Research, Professor and Chair, Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai-city 980-8575, Japan. Tel: +81-22-717-8363; Fax: +81-22-717-8367;
| |
Collapse
|
4
|
Effect of Long-Term 3D Spheroid Culture on WJ-MSC. Cells 2021; 10:cells10040719. [PMID: 33804895 PMCID: PMC8063822 DOI: 10.3390/cells10040719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of our work was to develop a protocol enabling a derivation of mesenchymal stem/stromal cell (MSC) subpopulation with increased expression of pluripotent and neural genes. For this purpose we used a 3D spheroid culture system optimal for neural stem cells propagation. Although 2D culture conditions are typical and characteristic for MSC, under special treatment these cells can be cultured for a short time in 3D conditions. We examined the effects of prolonged 3D spheroid culture on MSC in hope to select cells with primitive features. Wharton Jelly derived MSC (WJ-MSC) were cultured in 3D neurosphere induction medium for about 20 days in vitro. Then, cells were transported to 2D conditions and confront to the initial population and population constantly cultured in 2D. 3D spheroids culture of WJ-MSC resulted in increased senescence, decreased stemness and proliferation. However long-termed 3D spheroid culture allowed for selection of cells exhibiting increased expression of early neural and SSEA4 markers what might indicate the survival of cell subpopulation with unique features.
Collapse
|
5
|
Niibe K, Ohori-Morita Y, Zhang M, Mabuchi Y, Matsuzaki Y, Egusa H. A Shaking-Culture Method for Generating Bone Marrow Derived Mesenchymal Stromal/Stem Cell-Spheroids With Enhanced Multipotency in vitro. Front Bioeng Biotechnol 2020; 8:590332. [PMID: 33195156 PMCID: PMC7641632 DOI: 10.3389/fbioe.2020.590332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs), which generally expand into adherent monolayers, readily lose their proliferative and multilineage potential following repeated passages. Floating culture systems can be used to generate MSC spheroids, which are expected to overcome limitations associated with conventional adherent cultures while facilitating scaffold-free cell transplantation. However, the phenotypic characteristics of spheroids after long-term culture are unknown. In addition, regenerative therapies require new culture systems to maintain their undifferentiated state. In this study, we established a novel culture method employing three-dimensional (3D) “shaking” to generate MSC spheroids using bone marrow derived MSCs. Floating 3D cultures of mouse or human MSCs formed spheroids after shaking (85–95 rpm), within 1 month. These spheroids maintained their osteogenic-, adipogenic-, and chondrogenic-differentiation capacity. The adipogenic-differentiation capacity of adherent cultured mouse and human MSCs, which is lost following several passages, was remarkedly restored by shaking-culture. Notably, human MSC spheroids exhibited a renewable “undifferentiated MSC-pool” property, wherein undifferentiated MSCs grew from spheroids seeded repeatedly on a plastic culture dish. These data suggest that the shaking-culture method maintains and restores multipotency that is lost following monolayer expansion and thereby shows potential as a promising strategy for regenerative therapies with mesenchymal tissues.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, Matsue, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
6
|
Abedian Z, Jenabian N, Moghadamnia AA, Zabihi E, Pourbagher R, Hossein‐Nataj H, Mohamadnia‐Afrouzi M. A comparative study on immunophenotypic characterization and osteogenic differentiation of human mesenchymal stromal cells derived from periodontal ligament and gingiva. J Periodontol 2020; 91:1194-1202. [DOI: 10.1002/jper.19-0535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Zeinab Abedian
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Niloofar Jenabian
- Dental Materials Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | | | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
- Department of Pharmacology Babol University of Medical Sciences Babol Iran
| | - Roghayeh Pourbagher
- Student Research Committee Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Hadi Hossein‐Nataj
- Department of Immunology School of Medicine Mazandaran University of Medical Sciences Sari Iran
| | - Mousa Mohamadnia‐Afrouzi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| |
Collapse
|
7
|
Zhang M, Zhang X, Luo J, Yan R, Niibe K, Egusa H, Zhang Z, Xie M, Jiang X. Investigate the Odontogenic Differentiation and Dentin-Pulp Tissue Regeneration Potential of Neural Crest Cells. Front Bioeng Biotechnol 2020; 8:475. [PMID: 32582651 PMCID: PMC7290043 DOI: 10.3389/fbioe.2020.00475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Stem cell-based developmental engineering has been considered as a promising strategy for tissue/organ regeneration. Tooth is formed by sequential reciprocal interactions between epithelium derived from surface ectoderm and mesenchymal cells derived from cranial neural crest. The neural crest cell is an appealing cell source for tooth development and regeneration research. In this study, we investigated the odontogenic differentiation and dentin-pulp complex regeneration potential of neural crest cells. Our results showed that neural crest cells (O9-1 mouse cranial neural crest cell line) can sequentially differentiate into dentin matrix acidic phosphoprotein 1 (DMP-1)-positive odontoblasts within a developing tooth germ in vitro. Moreover, O9-1 cells and induced pluripotent stem cell (iPSC)-derived neural crest-like cells (iNCLCs) can form well-organized vascularized dentin-pulp complex when transplanted in vivo with tooth scaffold. Furthermore, both O9-1 cells and iNCLCs can be differentiated into odontoblast-like cells, positive staining with odontogenic-related markers DMP-1 and dentin sialophosphoprotein (DSPP), under odontogenic induction with the administration of bone morphogenetic protein 4 (BMP-4). These results demonstrated that neural crest cells, especially the unlimited iNCLCs, are a promising cell source for tooth development and dental tissue/tooth organ regeneration studies.
Collapse
Affiliation(s)
- Maolin Zhang
- Department of Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xiaochen Zhang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Luo
- Department of Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Ran Yan
- Department of Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xie
- Department of Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
9
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Yang S, Guo J, Zhou L, Xing H, Wang X, Dong C. miR-148b-3p, miR-337-5p and miR-423-5p expression in alveolar ridge atrophy and their roles in the proliferation and apoptosis of OMMSCs. Exp Ther Med 2018; 16:5334-5342. [PMID: 30542492 DOI: 10.3892/etm.2018.6850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) have key roles in various physiological and pathological processes by regulating the expression of specific genes. The identification of miRNAs involved in bone metabolism may provide insight into the expression of genes associated with the development of alveolar ridge atrophy. In the present study, the miRNA expression profiles in alveolar ridge atrophy and normal tissue samples were investigated by miRNA microarray analysis. Among the 52 differentially expressed miRNAs identified, the expression levels of 20 selected miRNAs in the alveolar ridge atrophy and normal tissue samples were verified by reverse transcription-quantitative polymerase chain reaction. The results indicated that the expression levels of 11 miRNAs were significantly different between alveolar ridge atrophy and normal tissue samples; however, only three of them (miR-148b-3p, miR-337-5p and miR-423-5p) were previously reported to be involved in bone metabolism. In vitro, miR-148b-3p, miR-337-5p and miR-423-5p mimics promoted the proliferation and inhibited apoptosis of bone marrow mesenchymal stem cells from orofacial bone (OMMSCs), while antisense inhibitors of these miRNAs had the opposite effect. In conclusion, the present study indicated that these miRNAs are involved in the pathogenesis of alveolar ridge atrophy. miR-148b-3p, miR-337-5p and miR-423-5p promote the proliferation of OMMSCs and inhibit their apoptosis. The present results provide a novel perspective for understanding the pathogenesis of alveolar ridge atrophy.
Collapse
Affiliation(s)
- Sefei Yang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jun Guo
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Department of Orthodontics, Hospital of Stomatology, Nankai University, Tianjin 300041, P.R. China
| | - Lei Zhou
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Helin Xing
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Xianli Wang
- Department of Prosthodontics, Anyang Sixth People's Hospital, Anyang, Henan 455000, P.R. China
| | - Chaofang Dong
- Lab for Corrosion Control and Research Development, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100853, P.R. China
| |
Collapse
|
12
|
Mukherjee A, Hollern DP, Williams OG, Rayburn TS, Byrd WA, Yates C, Jones JD. A Review of FOXI3 Regulation of Development and Possible Roles in Cancer Progression and Metastasis. Front Cell Dev Biol 2018; 6:69. [PMID: 30018953 PMCID: PMC6038025 DOI: 10.3389/fcell.2018.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Development and cancer share a variety of functional traits such as EMT, cell migration, angiogenesis, and tissue remodeling. In addition, many cellular signaling pathways are noted to coordinate developmental processes and facilitate aspects of tumor progression. The Forkhead box superfamily of transcription factors consists of a highly conserved DNA binding domain, which binds to specific DNA sequences and play significant roles during adult tissue homoeostasis and embryogenesis including development, differentiation, metabolism, proliferation, apoptosis, migration, and invasion. Interestingly, various studies have implicated the role of key Fox family members such as FOXP, FOXO, and FOXA during cancer initiation and metastases. FOXI3, a member of the Forkhead family affects embryogenesis, development, and bone remodeling; however, no studies have reported a role in cancer. In this review, we summarize the role of FOXI3 in embryogenesis and bone development and discuss its potential involvement in cancer progression with a focus on the bone metastasis. Moreover, we hypothesize possible mechanisms underlying the role of FOXI3 in the development of solid tumor bone metastasis.
Collapse
Affiliation(s)
- Angana Mukherjee
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | | | - Tyeler S Rayburn
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - William A Byrd
- Department of Biological Sciences, Troy University, Troy, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Jacqueline D Jones
- Department of Biological Sciences, Troy University, Troy, AL, United States.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States.,Department of Nursing and Allied Health, Troy University, Troy, AL, United States
| |
Collapse
|
13
|
Shen R, Xu W, Xue Y, Chen L, Ye H, Zhong E, Ye Z, Gao J, Yan Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:419-430. [PMID: 29661034 DOI: 10.1080/21691401.2018.1458233] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. METHODS Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. RESULTS It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). CONCLUSION The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation and osteogenic differentiation. The higher expression of inflammatory mediators caused by nano-fibers may be regulated via TLR4 pathway.
Collapse
Affiliation(s)
- Renze Shen
- a Department of Stomatology , Zhongshan Hospital Affiliated to Xiamen University, Medical College of Xiamen University , Xiamen , China.,b College of Stomatology , SouthernMedical University , Guangzhou , China
| | - Weihong Xu
- c Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou , People's Republic of China
| | - Yanxiang Xue
- b College of Stomatology , SouthernMedical University , Guangzhou , China
| | - Luyuan Chen
- b College of Stomatology , SouthernMedical University , Guangzhou , China
| | - Haicheng Ye
- d Department of Rehabilitation Medicine , First Hospital Affiliated to Xiamen University , Xiamen , Fujian Province , China
| | - Enyi Zhong
- b College of Stomatology , SouthernMedical University , Guangzhou , China
| | - Zhanchao Ye
- a Department of Stomatology , Zhongshan Hospital Affiliated to Xiamen University, Medical College of Xiamen University , Xiamen , China
| | - Jie Gao
- b College of Stomatology , SouthernMedical University , Guangzhou , China.,e Department of Endodontics , Guangzhou Medical University , Guangzhou , China
| | - Yurong Yan
- c Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou , People's Republic of China
| |
Collapse
|