1
|
Elugoke SE, Adekunle AS, Fayemi OE, Mamba BB, Nkambule TT, Sherif EM, Ebenso EE. Progress in electrochemical detection of neurotransmitters using carbon nanotubes/nanocomposite based materials: A chronological review. NANO SELECT 2020. [DOI: 10.1002/nano.202000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saheed E. Elugoke
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Abolanle S. Adekunle
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry Obafemi Awolowo University PMB Ile‐Ife Nigeria
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
| | - Bhekie B. Mamba
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - Thabo T.I. Nkambule
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University Al‐Riyadh Saudi Arabia
- Electrochemistry and Corrosion Laboratory Department of Physical Chemistry National Research Centre Dokki Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Department of Chemistry School of Physical and Chemical Sciences Faculty of Natural and Agricultural Sciences North‐West University (Mafikeng Campus) Mmabatho South Africa
- Nanotechnology and Water Sustainability Research Unit College of Science Engineering and Technology University of South Africa Johannesburg South Africa
| |
Collapse
|
2
|
Light welding Au nanoparticles assembled at water-air interface for monolayered nanoporous gold films with tunable electrocatalytic activity. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Liu Z, Forsyth H, Khaper N, Chen A. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites. Analyst 2018; 141:4074-83. [PMID: 27143513 DOI: 10.1039/c6an00429f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further employed for the electroanalysis of NO using differential pulse voltammetry (DPV) and amperometric methods. The dependence of AuPt molar ratios on the electrochemical performance was investigated. Through the combination of the advantages of the high conductivity from rGO and highly electrocatalytic activity from AuPt bimetallic nanoparticles, the AuPt-rGO based NO sensor exhibited a high sensitivity of 7.35 μA μM(-1) and a low detection limit of 2.88 nM. Additionally, negligible interference from common ions or organic molecules was observed, and the AuPt-rGO modified electrode demonstrated excellent stability. Moreover, this optimized electrochemical sensor was practicable for efficiently monitoring the NO released from rat cardiac cells, which were stimulated by l-arginine (l-arg), showing that stressed cells generated over 10 times more NO than normal cells. The novel sensor developed in this study may have significant medical diagnostic applications for the prevention and monitoring of disease.
Collapse
Affiliation(s)
- Zhonggang Liu
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Heidi Forsyth
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Neelam Khaper
- Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Aicheng Chen
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
4
|
Zhao X, Wang K, Li B, Wang C, Ding Y, Li C, Mao L, Lin Y. Fabrication of a Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet-Irradiation Approach for the Detection of Nitric Oxide Released from Cells. Anal Chem 2018; 90:7158-7163. [PMID: 29799730 DOI: 10.1021/acs.analchem.8b01088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We developed a simple and environmentally friendly ultraviolet (UV)-irradiation-assisted technique to fabricate a stretchable, nanostructured gold film as a flexible electrode for the detection of NO release. The flexible gold film endows the electrode with desirable electrochemical stability against mechanical deformation, including bending to different curvatures and bearing repeated bending circumstances (200 times). The flexible nanostructured gold electrodes can catalyze NO oxidation at 0.85 V (as opposed to Ag/AgCl) and detect NO within a wide linearity in the range of 10 nM to 1.295 μM. Its excellent NO-sensing ability and its stretchability together with its biocompatibility allows the electrode to electrochemically monitor NO release from mechanically sensitive HUVECs in both their unstretched and stretched states. This result paves the way for an effective and easily accessible platform for designing stretchable and flexible electrodes and opens more opportunities for sensing chemical-signal molecules released from cells or other biological samples during mechanical stimulation.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Keqing Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Bo Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Chao Wang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Yongqi Ding
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Changqing Li
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| | - Yuqing Lin
- Department of Chemistry , Capital Normal University , Beijing 100048 , China
| |
Collapse
|
5
|
Elliott J, Duay J, Simoska O, Shear JB, Stevenson KJ. Gold Nanoparticle Modified Transparent Carbon Ultramicroelectrode Arrays for the Selective and Sensitive Electroanalytical Detection of Nitric Oxide. Anal Chem 2017; 89:1267-1274. [DOI: 10.1021/acs.analchem.6b03987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Janine Elliott
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathon Duay
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Olja Simoska
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason B. Shear
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Center
for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| |
Collapse
|
6
|
Bhat SA, Pandit SA, Rather MA, Rather GM, Rashid N, Ingole PP, Bhat MA. Self-assembled AuNPs on sulphur-doped graphene: a dual and highly efficient electrochemical sensor for nitrite (NO2−) and nitric oxide (NO). NEW J CHEM 2017. [DOI: 10.1039/c7nj01565h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles self-assembled over sulphur-doped graphene as a reusable electrocatalyst for selective and sensitive quantification of NO2− and NO.
Collapse
Affiliation(s)
| | | | | | | | - Nusrat Rashid
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
| | | | | |
Collapse
|
7
|
Hasanzadeh M, Shadjou N, Guardia MDL. Current advancement in electrochemical analysis of neurotransmitters in biological fluids. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Liu YL, Jin ZH, Liu YH, Hu XB, Qin Y, Xu JQ, Fan CF, Huang WH. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues. Angew Chem Int Ed Engl 2016; 55:4537-41. [PMID: 26929123 DOI: 10.1002/anie.201601276] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/19/2023]
Abstract
Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zi-He Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Hong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue-Bo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Qin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jia-Quan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Cui-Fang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Liu YL, Jin ZH, Liu YH, Hu XB, Qin Y, Xu JQ, Fan CF, Huang WH. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Zi-He Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yan-Hong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Xue-Bo Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yu Qin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Jia-Quan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Cui-Fang Fan
- Department of Obstetrics and Gynecology; Renmin Hospital of Wuhan University; Wuhan 430060 China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education); College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| |
Collapse
|
10
|
Viswanathan P, Manivannan S, Ramaraj R. Polyelectrolyte stabilized bi-metallic Au/Ag nanoclusters modified electrode for nitric oxide detection. RSC Adv 2015. [DOI: 10.1039/c5ra06098b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bi-metallic Au/Ag NCs were prepared, synergistic electrooxidation of NO was observed at Au/Ag NCs modified electrode and electrochemical sensing response time was found to be 1 s.
Collapse
Affiliation(s)
- Perumal Viswanathan
- School of Chemistry
- Centre for Photoelectrochemistry
- Madurai Kamaraj University
- Madurai - 625 021
- India
| | - Shanmugam Manivannan
- School of Chemistry
- Centre for Photoelectrochemistry
- Madurai Kamaraj University
- Madurai - 625 021
- India
| | - Ramasamy Ramaraj
- School of Chemistry
- Centre for Photoelectrochemistry
- Madurai Kamaraj University
- Madurai - 625 021
- India
| |
Collapse
|
11
|
|
12
|
Xu T, Scafa N, Xu LP, Su L, Li C, Zhou S, Liu Y, Zhang X. Electrochemical Sensors for Nitric Oxide Detection in Biological Applications. ELECTROANAL 2014. [DOI: 10.1002/elan.201300564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing. Talanta 2013; 115:228-34. [DOI: 10.1016/j.talanta.2013.03.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
|
14
|
Sensing of nitric oxide using a glassy carbon electrode modified with an electrocatalytic film composed of dihexadecyl hydrogen phosphate, platinum nanoparticles, and acetylene black. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0676-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Li WT, Wang MH, Li YJ, Sun Y, Li JC. Linker-free layer-by-layer self-assembly of gold nanoparticle multilayer films for direct electron transfer of horseradish peroxidase and H2O2 detection. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Fajín JL, Cordeiro MND, Gomes JR. DFT study on the NO oxidation on a flat gold surface model. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.12.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Eletrodeposited nickel oxide on a film of carbon nanotubes for monitoring nitric oxide release from rat kidney and drug samples. Mikrochim Acta 2011. [DOI: 10.1007/s00604-010-0525-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ng SR, Guo CX, Li CM. Highly Sensitive Nitric Oxide Sensing Using Three-Dimensional Graphene/Ionic Liquid Nanocomposite. ELECTROANAL 2010. [DOI: 10.1002/elan.201000344] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Nitric oxide measurement in biological and pharmaceutical samples by an electrochemical sensor. J Solid State Electrochem 2010. [DOI: 10.1007/s10008-010-1157-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Wang MH, Hu JW, Li YJ, Yeung ES. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects. NANOTECHNOLOGY 2010; 21:145608. [PMID: 20234084 DOI: 10.1088/0957-4484/21/14/145608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An environment-friendly method is developed to fabricate close-packed Au nanoparticle (AuNP) monolayers with sub-10 nm interparticle spacing simply by covering n-butanol on the surface of an Au aqueous colloid. The close-packed nanostructure can further transform into two-dimensional (2D) aggregates with different aggregation degrees upon aging for several days. This structural evolution process was disclosed by transition electron microscopy (TEM) and UV-vis spectroscopy and its influence on the ensemble optical properties was further demonstrated by surface-enhanced Raman scattering (SERS). It was revealed that creating sub-10 nm interparticle spacing and particle dimers are highly desirable for engendering strong SERS activity under a 632.8 nm excitation. Further aging the film leads to the formation of larger aggregates, which moves the surface plasmon resonance of the aggregates gradually 'off-resonance' from the 632.8 nm excitation line and costs some numbers of sub-10 nm interparticle spacings. The two parameters together decrease the SERS activity of the close-packed AuNP monolayers. The present strategy thus provides an easy way to finely tune the SERS properties of thin nanoparticle films and other ensemble properties, which can easily be realized by creating sub-10 interparticle spacing, controlling the particle aggregation degree and by adopting suitable particle sizes and shapes.
Collapse
Affiliation(s)
- Min-Hua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Kannan P, John SA. Highly sensitive electrochemical determination of nitric oxide using fused spherical gold nanoparticles modified ITO electrode. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.01.084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Sivanesan A, John S. Highly Sensitive Electrochemical Sensor for Nitric Oxide Using the Self-Assembled Monolayer of 1,8,15,22-Tetraaminophthalocyanatocobalt(II) on Glassy Carbon Electrode. ELECTROANAL 2010. [DOI: 10.1002/elan.200900443] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009; 653:1-22. [PMID: 19800472 PMCID: PMC2759352 DOI: 10.1016/j.aca.2009.08.038] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.
Collapse
Affiliation(s)
- Maura Perry
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
24
|
Liu C, Li YJ, Wang MH, He Y, Yeung ES. Rapid fabrication of large-area nanoparticle monolayer films via water-induced interfacial assembly. NANOTECHNOLOGY 2009; 20:065604. [PMID: 19417392 DOI: 10.1088/0957-4484/20/6/065604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Close-packed nanoparticle monolayer films have been assembled at the water/toluene interface, and they can be transferred onto various hydrophilic solid substrates. The method involves adding alcohol and then toluene (when the dispersant is itself alcohol, only toluene was added) into a hydrophilic nanoparticle dispersion, and then a large quantity of distilled water was rapidly poured into the mixed system. Simultaneously, nanoparticles in the dispersion were extracted to the water/toluene interface, forming a thin film with a metallic sheen. The close-packed structures of these thin films were verified by transmission electron microscopy (TEM) characterizations. This method can work well for those hydrophilic nanoparticles without strongly bonded stabilizers, such as citrate-stabilized Au nanoparticles, polyvinylpyrrolidone (PVP)-stabilized Pt or Ag nanoparticles, and SiO(2) microspheres. Large-area nanoparticle monolayer films (e.g., more than 200 cm(2)) could be prepared in less than 10 s. Due to its inherent simplicity and speed, the method should be of significance for the nanofilm industry.
Collapse
Affiliation(s)
- Cai Liu
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
|