1
|
Kesavan S, Kumar DR, Dhakal G, Kim WK, Lee YR, Shim JJ. Poly(caffeic acid) Redox Couple Decorated on Electrochemically Reduced Graphene Oxide for Electrocatalytic Sensing Free Chlorine in Drinking Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010151. [PMID: 36616061 PMCID: PMC9824798 DOI: 10.3390/nano13010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 05/31/2023]
Abstract
Regular water quality measurements are essential to the public water supply. Moreover, selective free chlorine (disinfectant) level monitoring without an interfering agent is necessary. The present work aimed to fabricate poly(caffeic acid) (p-CFA) coated on an electrochemically reduced graphene oxide (ERGO) surface for the selective detection of free chlorine. Electron microscopy and various spectroscopic techniques confirmed the p-CFA@ERGO/glassy carbon (GC) electrode. The p-CFA@ERGO/GC coated probe surface coverage was calculated to be 4.75 × 10-11 mol cm-2. The p-CFA@ERGO/GC showed superior catechol/o-quinone oxidation/reduction peaks for electrocatalytic free chlorine determination. The performance of the developed sensor electrode was outstanding, with an extensive range of free chlorine detection (20 μM to 20 mM), high sensitivity (0.0361 µA µM-1), and low detection limit (0.03 µM). The p-CFA@ERGO/GC capability of the realist water samples, such as the tested commercial and tap water, yielded a good range of recovery (from 98.5% to 99.9%). These values align with the standard N,N'-diethyl-p-phenylenediamine reagent method results.
Collapse
|
2
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
3
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
4
|
Imanzadeh H, Bakirhan NK, Kuralay F, Amiri M, Ozkan SA. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit Rev Anal Chem 2021; 53:1263-1284. [PMID: 34941476 DOI: 10.1080/10408347.2021.2018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Graphene, emerging as a true two-dimensional (2D) material, has attracted increasing attention due to its unique physical and electrochemical properties such as high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production. The entire scientific community recognizes the significance and potential impact of graphene. Electrochemical detection strategies have advantages such as being simple, fast, and low-cost. The use of graphene as an excellent interface for electrode modification provides a promising way to construct more sensitive and stable electrochemical (bio)sensors. The review presents sensors based on graphene and its derivatives for electrochemical drug assays from pharmaceutical dosage forms and biological samples. Future perspectives in this rapidly developing field are also discussed. In addition, the interaction of several important anticancer drug molecules with deoxyribonucleic acid (DNA) that was immobilized onto graphene-modified electrodes has been detailed in terms of dosage regulation and utility purposes.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Sinduja B, Gowthaman NSK, John SA. Fabrication of low-cost sustainable electrocatalyst: a diagnostic tool for multifunctional disorders in human fluids. J Mater Chem B 2021; 8:9502-9511. [PMID: 32996975 DOI: 10.1039/d0tb01681k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In purine metabolism, the xanthine oxidoreductase enzyme converts hypoxanthine (HXN) to xanthine (XN) and XN to uric acid (UA). This leads to the deposition of UA crystals in several parts of the body and the serum UA level might be associated with various multifunctional disorders. The dietary intake of caffeine (CF) and ascorbic acid (AA) decreases the UA level in the serum, which leads to cellular damage. Hence, it is highly needed to monitor the UA level in the presence of AA, XN, HXN, and CF and vice versa. Considering this sequence of complications, the present paper reports the fabrication of an electrochemical sensor using low-cost N-doped carbon dots (CDs) for the selective and simultaneous determination of UA in the presence of AA, XN, HXN, and CF at the physiological pH. The colloidal solution of CDs was prepared by the pyrolysis of asparagine and fabricated on a GC electrode by cycling the potential from -0.20 to +1.2 V in a solution containing CDs and 0.01 M H2SO4. Here, the surface -NH2 functionalities of CDs were used to make a thin film of CDs on the GC electrode. FT-IR spectroscopy confirmed the involvement of the -NH2 group in the formation of the CD film. HR-TEM analysis depicts that the formed CDs showed spherical particles with a size of 1.67 nm and SEM analysis exhibits the 89 nm CD film on the GC electrode surface. The fabricated CD film was successfully used for the sensitive and selective determination of UA. The determination of UA was achieved selectively in a mixture consisting of AA, XN, HXN, and CF with 50-fold high concentration. The CDs-film fabricated electrode has several benefits over the bare electrode: (i) well-resolved oxidation peaks for five analytes, (ii) boosted sensitivity, (iii) shifted oxidation as well as on-set potentials toward less positive potentials, and (iv) high stability. The practical utility of the present sensor was tested by simultaneously determining the multifactorial disorders-causing agents in human fluids. The electrocatalyst developed in the present study is sustainable and can be used for multiple analyses; besides, the electrochemical method used for the fabrication of the CD film is environmentally benign.
Collapse
Affiliation(s)
- Bharathi Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram-624 302, Dindigul, Tamilnadu, India.
| | - N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram-624 302, Dindigul, Tamilnadu, India.
| |
Collapse
|
6
|
Sasal A, Tyszczuk‐Rotko K, Chojecki M, Korona T, Nosal‐Wiercińska A. Direct Determination of Paracetamol in Environmental Samples Using Screen‐printed Carbon/Carbon Nanofibers Sensor – Experimental and Theoretical Studies. ELECTROANAL 2020. [DOI: 10.1002/elan.202000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Agnieszka Sasal
- Faculty of Chemistry, Institute of Chemical SciencesMaria Curie-Skłodowska University in Lublin 20-031 Lublin Poland
| | - Katarzyna Tyszczuk‐Rotko
- Faculty of Chemistry, Institute of Chemical SciencesMaria Curie-Skłodowska University in Lublin 20-031 Lublin Poland
| | - Michał Chojecki
- Faculty of ChemistryUniversity of Warsaw 02-093 Warsaw Poland
| | - Tatiana Korona
- Faculty of ChemistryUniversity of Warsaw 02-093 Warsaw Poland
| | - Agnieszka Nosal‐Wiercińska
- Faculty of Chemistry, Institute of Chemical SciencesMaria Curie-Skłodowska University in Lublin 20-031 Lublin Poland
| |
Collapse
|
7
|
Kesavan S, Kumar DR, Baynosa ML, Shim JJ. Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: Determination of nitrite in water samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:97-106. [PMID: 29407162 DOI: 10.1016/j.msec.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/19/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022]
Abstract
An electrode comprised of a polydiaminobenzene (p-DAB) film formed on electrochemically reduced graphene oxide (ERGO) on a glassy carbon (GC) (p-DAB@ERGO/GC) was fabricated using a potentiodynamic method for the sensitive and selective determination of nitrite in the presence of a common interference. The p-DAB@ERGO/GC film-modified electrode surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The film fabrication was initiated via the NH2 groups of DAB, which was confirmed by XPS from the peaks corresponding to NH (396.7eV), NH (399.4eV), NN (400.2eV), and N+H (402.2eV). The Raman spectra revealed the characteristic D and G bands at 1348 and 1595cm-1, respectively, which confirmed the fabrication of GO on the GC electrode, and the ratio of the D and G bands was increased after the electrochemical reduction of GO. The surface coverage of the modified electrode was 8.16×10-11molcm-2. The p-DAB@ERGO/GC film-modified electrode was used successfully for the determination of nitrite ions. The p-DAB@ERGO/GC film-modified electrode exhibited superior activity for the determination of nitrite compared to the bare GC and p-DAB@GC electrodes. The amperometric current increased linearly with increasing nitrite concentration from 7.0×10-6 to 2.0×10-2M. The detection limit was 30nM (S/N=3). In addition, the modified electrode was used successfully to determine the nitrite ion concentration in the presence of a 100-fold excess of common interferents. The practical application of the modified electrode was demonstrated by determining the nitrite ion concentration in water samples.
Collapse
Affiliation(s)
- Srinivasan Kesavan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India (c)CSIR-Central Electrochemical Research Institute-Chennai Centre,CSIR-Madras Complex, Taramani, Chennai-600 113, India
| | - Deivasigamani Ranjith Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; ECSIR-Central Electrochemical Research Institute-Chennai Centre, CSIR-Madras Complex, Taramani, Chennai-600 113, India
| | - Marjorie Lara Baynosa
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
8
|
A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J APPL ELECTROCHEM 2017. [DOI: 10.1007/s10800-017-1060-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Heimburger D, Gam-Derouich S, Decorse P, Mangeney C, Pinson J. Reversible Trapping of Functional Molecules at Interfaces Using Diazonium Salts Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9714-9721. [PMID: 27589560 DOI: 10.1021/acs.langmuir.6b02468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Developing thin polymeric films for trapping, releasing, delivering, and sensing molecules is important for many applications in chemistry, biotechnology, and environment. Hence, a facile and scalable technique for loading specific molecules on surfaces would rapidly translate into applications. This work presents a novel method for the trapping of functional molecules at interfaces by exploiting diazonium salt chemistry. We demonstrate the efficiency of this approach by trapping two different molecules, 4-nitrobenzophenone and paracetamol, within polycarboxyphenyl layers grafted on gold and glassy carbon (GC) and by releasing them in acidic medium. The former molecule was chosen as a proof of concept for its electrochemical and spectroscopic properties, and the latter one was selected as an example of a pharmaceutical molecule. Advantages of the present approach rely on the simplicity, rapidity, and efficiency of the procedure for the reversible, on demand, trapping and release of functional molecules.
Collapse
Affiliation(s)
- Doriane Heimburger
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Cedex 13 Paris, France
| | - Sarra Gam-Derouich
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Cedex 13 Paris, France
| | - Philippe Decorse
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Cedex 13 Paris, France
| | - Claire Mangeney
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Cedex 13 Paris, France
| | - Jean Pinson
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Cedex 13 Paris, France
| |
Collapse
|