1
|
Mukherjee N, Blanchard GJ. Reversible in situ Control over Monolayer Organization. Chemphyschem 2025; 26:e202400646. [PMID: 39312506 DOI: 10.1002/cphc.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Cr2+ and Cr3+ ions are shown to mediate the formation, morphology, and organization of arachidic acid (AA) Langmuir-Blodgett (LB) monolayers. This finding, based on cyclic voltammetry (CV), linear sweep voltammetry (LSV) and fluorescence recovery after photobleaching (FRAP) measurements, show that Langmuir monolayer formation depends on subphase pH and metal ion concentration. Following monolayer deposition on indium tin oxide (ITO), the LB monolayer organization can be modified reversibly through control of the Cr oxidation state, which has not been shown before by other monolayers formed with other divalent metal ions. The dynamics and the mobility of a chromophore (perylene) incorporated into the monolayer sense changes in Cr oxidation state-dependent organization of the LB monolayer. Demonstrating reversible changes in monolayer organization provides an opportunity to control chemical and electron access to the interface support.
Collapse
Affiliation(s)
- Neelanjana Mukherjee
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Magalhães FSS, Vieira ED, Batista MRB, Costa-Filho AJ, Basso LGM. Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes. MEMBRANES 2024; 14:267. [PMID: 39728717 DOI: 10.3390/membranes14120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van't Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function.
Collapse
Affiliation(s)
- Fadi S S Magalhães
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Ernanni D Vieira
- Laboratório de Física Biológica, Instituto de Física, Universidade Federal de Goiás, Avenida Esperança s/n, Campus Samambaia, Goiânia 74690-900, GO, Brazil
| | - Mariana R B Batista
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7Al, UK
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Luis G M Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
3
|
Sadeghzadeh H, Blanchard GJ. Quantitating the Binding Energy of Metal Ions to Langmuir-Blodgett Monolayers: The Copper(II)-Octadecylphosphonic Acid System. J Phys Chem B 2022; 126:3366-3373. [PMID: 35442044 DOI: 10.1021/acs.jpcb.2c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the formation and organization of a Cu2+-complexed octadecylphosphonic acid (ODPA) monolayer formed by Langmuir-Blodgett deposition. The formation of the Cu-complexed monolayer is seen to depend sensitively on the subphase pH and Cu2+ concentration, and it is possible to form a monolayer containing the regions of complexed and free ODPA. From the pressure-area isotherm data for these monolayers, we determine the equilibrium constant and free energy of formation for the Cu2+-ODPA complex, ΔG = -22.5 kJ/mol.
Collapse
Affiliation(s)
- Homa Sadeghzadeh
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Baccile N, Derj A, Boissière C, Humblot V, Deniset-Besseau A. Homogeneous supported monolayer from microbial glycolipid biosurfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Silin VI, Hoogerheide DP. pH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. J Colloid Interface Sci 2021; 594:279-289. [PMID: 33765647 DOI: 10.1016/j.jcis.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.
Collapse
Affiliation(s)
- Vitalii I Silin
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville MD 20850, USA.
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
6
|
Livingston C, Blanchard GJ. Translational Diffusion Dynamics in Divalent Metal-Phosphonate Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7573-7581. [PMID: 34101478 DOI: 10.1021/acs.langmuir.1c01067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled monolayers are attractive for surface modification due to their ease of synthesis and the range of chemical functionality that can be applied. Metal-phosphonate monolayer properties can be controlled through the metal ions that can be used in their formation. The organization and fluid properties of these monolayers can be understood in the context of their thermodynamic properties and the association and dissociation kinetics that proceed at the metal-phosphonate complex. In this work, four different M(II)-phosphonate monolayers were synthesized and the diffusional behavior of free and tethered chromophores was evaluated using fluorescence recovery after photobleaching measurements. The ω-terminal group identity of the metal-phosphonate monolayer was varied to determine its effect on monolayer dynamics.
Collapse
Affiliation(s)
- Corbin Livingston
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Capistran BA, Blanchard GJ. Spectroscopic Analysis of Cu(II)-Complexed Thin Films to Characterize Molecular-Level Interactions and Film Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5089-5097. [PMID: 33856223 DOI: 10.1021/acs.langmuir.1c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on the structure and dynamics of a Cu2+-complexed arachidic acid (AA) monolayer formed by Langmuir-Blodgett (LB) deposition. Infrared reflection-absorption spectroscopy (IRRAS) was used to characterize aliphatic chain -CH2 symmetric and asymmetric stretching modes and determine the chain tilt angle and order as a function of subphase pH. Monolayer structure is controlled by metal ion-amphiphile interactions. At low subphase pH (<5), film buckling at high surface pressure is observed, while for high subphase pH (≥5), monolayer buckling is not observed. This finding is correlated to monolayer structural mediation by metal ion-amphiphile interactions. Dynamics and mobility of a fluorophore incorporated into the monolayer were also affected by Cu2+-AA interactions, determined by fluorescence recovery after photobleaching (FRAP) measurements. These data are consistent with the formation of a rigid film due to Cu2+ coordination to AA headgroups, with the extent of headgroup protonation being determined by the pH of the subphase during monolayer deposition.
Collapse
Affiliation(s)
- Briana A Capistran
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Biswas KH, Jackman JA, Park JH, Groves JT, Cho NJ. Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1775-1782. [PMID: 29281791 DOI: 10.1021/acs.langmuir.7b03799] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pathway of vesicle adsorption onto a solid support depends on the material composition of the underlying support, and there is significant interest in developing material-independent strategies to modulate the spectrum of vesicle-substrate interactions on a particular surface. Herein, using the quartz crystal microbalance-dissipation (QCM-D) technique, we systematically investigated how solution pH and membrane surface charge affect vesicle adsorption onto a silicon dioxide surface. While vesicle adsorption and spontaneous rupture to form complete supported lipid bilayer (SLBs) occurred in acidic conditions, it was discovered that a wide range of adsorption pathways occurred in alkaline conditions, including (i) vesicle adsorption and spontaneous rupture to form complete SLBs, (ii) vesicle adsorption and spontaneous rupture to form incomplete SLBs, (iii) irreversible adsorption of intact vesicles, (iv) reversible adsorption of intact vesicles, and (v) negligible adsorption. In general, SLB formation became more favorable with increasingly positive membrane surface charge although there were certain conditions at which attractive electrostatic forces were insufficient to promote vesicle rupture. To rationalize these findings, we discuss how solution pH and membrane surface charge affect interfacial forces involved in vesicle-substrate interactions. Taken together, our findings present a comprehensive picture of how interfacial forces dictate the pathway of phospholipid vesicle adsorption onto silicon dioxide surfaces and offer a broadly applicable framework to characterize the interactions between phospholipid vesicles and inorganic material surfaces.
Collapse
Affiliation(s)
- Kabir H Biswas
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Jay T Groves
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|