1
|
Mohamed MEB, Sebaei AS, Mahmoud NM, Mohammed NA, Hassan HA, Abdel-Aal RR. Electrochemical and chromatographic methods for the determination of some natural food preservatives - A review. Food Chem 2025; 468:142491. [PMID: 39706116 DOI: 10.1016/j.foodchem.2024.142491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Food preservatives are essential for maintaining the safety and quality of food products. Nisin and natamycin are natural food preservatives extensively used in the food industry to enhance various food products' shelf life and safety. Nisin, a polycyclic antibacterial peptide, is effective against a broad spectrum of Gram-positive bacteria, including foodborne pathogens and spoilage organisms. On the other hand, natamycin, a polyene macrolide antifungal agent, exhibits strong efficacy against molds and yeasts, without affecting bacteria, thus preserving the natural microbial balance in fermented foods and other products susceptible to fungal contamination. Furthermore, determining food preservatives precisely is essential to guaranteeing food safety and quality. Due to the low concentrations used from these preservatives and the possibility of interference from food matrices during analysis, sensitive and accurate analytical techniques are required for the analysis of nisin and natamycin. Both electrochemical and chromatographic techniques enable rapid, sensitive, and precise analysis. This review highlights the research results in the last twenty-four years and methodological advancements and compares the sensitivity, accuracy, and practical applicability of these techniques to provide insight into the usefulness and suitability of electrochemical and chromatographic techniques for monitoring nisin and natamycin levels for regulatory compliance and food quality control. Moreover, it suggests future research directions to improve the efficiency and reliability of these analytical techniques.
Collapse
Affiliation(s)
| | - Ahmed Salem Sebaei
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza 12311, Egypt
| | | | | | | | | |
Collapse
|
2
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2025; 12:343-363. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
3
|
Mohamed AA, Abdel-Hakam Abbas K, Shaaban Abdelmontaleb H, Hamed MIA, Mostafa IM, Ahmed Elsayed M. A unique implementation of Hantzsch reaction for determination of natamycin in Yoghurt: Hyphenated with Box-Behnken-design for optimization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124395. [PMID: 38714004 DOI: 10.1016/j.saa.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
This study aims to develop a novel and selective method for the detection of natamycin (E235) in yoghurt. The suggested method adopts an application of Hantzsch reaction to turn on the fluorescence behavior of natamycin (blue fluorescence), allowing its sensitive and selective determination in yoghurt samples without any overlapping at 485 nm. The originality of the research lies in the fact that this application takes place for the first time, also the detection (LOD) and quantification (LOQ) limits were very low (0.02 and 0.06μg mL-1, respectively) with a linear concentration range of 0.1-1.0 μgmL-1. Moreover, the developed method was employed for the detection of E235 in yoghurt sample with a good recoveries (98.80 ± 1.20-99.20 ± 1.15 (%), over a concentration range of 0.5-1.0 μgmL-1, (LOD = 0.04 and LOQ = 0.12 μgmL-1). Furthermore, the specificity and convenient application of our intended method is an attempt to determine E235 in milk anddairy products with easily followable steps.
Collapse
Affiliation(s)
- Abobakr A Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | | | | | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Islam M Mostafa
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Mohamed Ahmed Elsayed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt.
| |
Collapse
|
4
|
Şanlı S, Kılıçarslan S, Şanlı N. Evaluation of natamycin in commercial dairy products by a green capillary zone electrophoresis method and confirmation with a Liquid Chromatography-Mass Spectrometry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Wu Y, Guo K, Zhao J, Duan Q, Wang F, Lu K. Highly sensitive and selective electrochemical detection of clothianidin using reduced graphene oxide-anionic pillar[6]arene composite film. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wu Y, Liu D, Guo J, Wang F. A molybdenum disulfide-reduced graphene oxide nanocomposite as an electrochemical sensing platform for detecting cyproterone acetate. NEW J CHEM 2022. [DOI: 10.1039/d1nj05225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the synergistic effect of MoS2 and rGO, a MoS2-rGO nanocomposite film shows a wide linear range and high sensitivity towards cyproterone acetate.
Collapse
Affiliation(s)
- Yanju Wu
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, P. R. China
| | - Didi Liu
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, P. R. China
| | - Jiahua Guo
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, P. R. China
| | - Fei Wang
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, P. R. China
| |
Collapse
|
7
|
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical sensors in electroanalysis are a particularly useful and relatively simple way to identify electroactive substances. Among the materials used to design sensors, there is a growing interest in different types of carbon. This is mainly due to its non-toxic properties, low cost, good electrical conductivity, wide potential range, and the possibility of using it in both aqueous and nonaqueous media. The electrodes made of carbon, and especially of carbon modified with different materials, are currently most often used in the voltammetric analysis of various compounds, including preservatives. The objective of this paper is to present the characteristics and suitability of different carbon materials for the construction of working electrodes used in the voltammetric analysis. Various carbon materials were considered and briefly discussed. Their analytical application was presented on the example of the preservatives commonly used in food, cosmetic, and pharmaceutical preparations. It was shown that for the electroanalysis of preservatives, mainly carbon electrodes modified with various modifiers are used. These modifications ensure appropriate selectivity, high sensitivity, low limits of detection and quantification, as well as a wide linearity range of voltammetric methods of their identification and determination.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | | | |
Collapse
|
8
|
A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Mielech-Łukasiewicz K, Leoniuk M. Voltammetric determination of natamycin using a cathodically pretreated boron-doped diamond electrode in the presence of sodium dodecyl sulfate. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 2020; 175:112836. [PMID: 33272868 DOI: 10.1016/j.bios.2020.112836] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023]
Abstract
The surging growth of the pharmaceutical industry is a result of the rapidly increasing human population, which has inevitably led to new biomedical and environmental issues. Aside from the quality control of pharmaceutical production and drug delivery, there is an urgent need for precise, sensitive, portable, and cost-effective technologies to track patient overdosing and to monitor ambient water sources and wastewater for pharmaceutical pollutants. The development of advanced nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds has garnered immense attention due to their advantages, such as high sensitivity and selectivity, real-time monitoring, and ease of use. This review article surveys state-of-the-art nanomaterials-based electrochemical sensors and biosensors for the detection and quantification of six classes of significant pharmaceutical compounds, including anti-inflammatory, anti-depressant, anti-bacterial, anti-viral, anti-fungal, and anti-cancer drugs. Important factors such as sensor/analyte interactions, design rationale, fabrication, characterization, sensitivity, and selectivity are discussed. Strategies for the development of high-performance electrochemical sensors and biosensors tailored toward specific pharmaceuticals are highlighted to provide readers and scientists with an extensive toolbox for the detection of a wide range of pharmaceuticals. Our aims are two-fold: (i) to inspire readers by further elucidating the properties and functionalities of existing nanomaterials for the detection of pharmaceuticals; and (ii) to provide examples of the potential opportunities that these devices have for the advanced sensing of pharmaceutical compounds toward safeguarding human health and ecosystems on a global scale.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada.
| |
Collapse
|
11
|
New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101925] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-walled carbon nanotubes (MWCNT) have provided unprecedented advances in the design of electrochemical sensors. They are composed by sp2 carbon units oriented as multiple concentric tubes of rolled-up graphene, and present remarkable active surface area, chemical inertness, high strength, and low charge-transfer resistance in both aqueous and non-aqueous solutions. MWCNT are very versatile and have been boosting the development of a new generation of electrochemical sensors with application in medicine, pharmacology, food industry, forensic chemistry, and environmental fields. This work highlights the most important synthesis methods and relevant electrochemical properties of MWCNT for the construction of electrochemical sensors, and the numerous configurations and successful applications of these devices. Thousands of studies have been attesting to the exceptional electroanalytical performance of these devices, but there are still questions in MWCNT electrochemistry that deserve more investigation, aiming to provide new outlooks and advances in this field. Additionally, MWCNT-based sensors should be further explored for real industrial applications including for on-line quality control.
Collapse
|