1
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
2
|
Zambrano-Intriago LA, Amorim CG, Araújo AN, Gritsok D, Rodríguez-Díaz JM, Montenegro MCBSM. Development of an inexpensive and rapidly preparable enzymatic pencil graphite biosensor for monitoring of glyphosate in waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158865. [PMID: 36165910 DOI: 10.1016/j.scitotenv.2022.158865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) is the most widely used non-selective broad-spectrum herbicide worldwide under well-reported side effects on the environment and human health. That's why it's necessary to control its presence in the environment. This work describes the development of an affordable, simple, and accurate electrochemical biosensor using a pencil graphite electrode as support, a horseradish peroxidase enzyme immobilized on a polysulfone membrane doped with multi-walled carbon nanotubes. The developed electrochemical sensor was used in the determination of GLY in river and drinking water samples. Cyclic voltammetry and amperometry were used as electrochemical detection techniques for the characterization and analytical application of the developed biosensor. The working mechanism of the biosensor is based on the inhibition of the peroxidase enzyme by GLY. Under optimal experimental conditions, the biosensor showed a linear response in the concentration range of 0.1 to 10 mg L-1. The limits of detection and quantification are 0.025 ± 0.002 and 0.084 ± 0.007 mg L-1, respectively, which covers the maximum residual limit established by the EPA for drinking water (0.7 mg L-1). The proposed biosensor demonstrated high reproducibility, excellent analytical performance, repeatability, and accuracy. The sensor proved to be selective against other pesticides, organic acids, and inorganic salts. Application on real samples showed recovery rates ranging between 98.18 ± 0.11 % and 97.32 ± 0.23 %. The analytical features of the proposed biosensor make it an effective and useful tool for the detection of GLY for environmental analysis.
Collapse
Affiliation(s)
- Luis Angel Zambrano-Intriago
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alberto N Araújo
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Dmitrij Gritsok
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
4
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
5
|
Liu J, Ruan G, Ma W, Sun Y, Yu H, Xu Z, Yu C, Li H, Zhang CW, Li L. Horseradish peroxidase-triggered direct in situ fluorescent immunoassay platform for sensing cardiac troponin I and SARS-CoV-2 nucleocapsid protein in serum. Biosens Bioelectron 2022; 198:113823. [PMID: 34838374 PMCID: PMC8606172 DOI: 10.1016/j.bios.2021.113823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Direct in situ fluorescent enzyme-linked immunosorbent assay (ELISA) is rarely investigated and reported. Herein, a direct in situ high-performance HRP-labeled fluorescent immunoassay platform was constructed. The platform was developed based on a rapid in situ fluorogenic reaction between Polyethyleneimine (PEI) and p-Phenylenediamine (PPD) analogues to generate fluorescent copolymer nanoparticles (FCNPs). The formation mechanism of FCNPs was found to be the oxidation of •OH radicals, which was further proved by nitrogen protection and scavenger of •OH radicals. Meantime, the fluorescence wavelength of FCNPs could be adjusted from 471 to 512 nm by introducing various substitution groups into the PPD structure. Using cardiac troponin I (cTnI) and SARS-CoV-2 nucleocapsid protein (N-protein) as the model antigens, the proposed fluorescent ELISA exhibited a wide dynamic range of 5-180 ng/mL and a low limit of detection (LOD) of 0.19 ng/mL for cTnI, and dynamic range of 0-120 ng/mL and a LOD of 0.33 ng/mL for SARS-CoV-2 N protein, respectively. Noteworthy, the proposed method was successful applied to evaluate the cTnI and SARS-CoV-2 N protein levels in serum with satisfied results. Therefore, the proposed platform paved ways for developing novel fluorescence-based HRP-labeled ELISA technologies and broadening biomarker related clinical diagnostics.
Collapse
Affiliation(s)
- Jinhua Liu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| | - Guotong Ruan
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenlin Ma
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yujie Sun
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Cheng-Wu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian Road, Taiyuan, 310003, PR China.
| | - Lin Li
- Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
6
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
The preparation of Fe-based peroxidase mimetic nanozymes and for the electrochemical detection of histamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Sanz CG, Onea M, Aldea A, Barsan MM. Disposable superoxide dismutase biosensors based on gold covered polycaprolactone fibers for the detection of superoxide in cell culture media. Talanta 2022; 241:123255. [DOI: 10.1016/j.talanta.2022.123255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
9
|
Doğan V, Yüzer E, Kılıç V, Şen M. Non-enzymatic colorimetric detection of hydrogen peroxide using a μPAD coupled with a machine learning-based smartphone app. Analyst 2021; 146:7336-7344. [PMID: 34766967 DOI: 10.1039/d1an01888d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present study, iodide-mediated 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 reaction system was applied to a microfluidic paper-based analytical device (μPAD) for non-enzymatic colorimetric determination of H2O2. The proposed system is portable and incorporates a μPAD with a machine learning-based smartphone app. A smartphone app called "Hi-perox Sens" capable of image capture, cropping and processing was developed to make the system simple and user-friendly. Briefly, circular μPADs were designed and tested with varying concentrations of H2O2. Following the color change, the images of the μPADs were taken with four different smartphones under seven different illumination conditions. In order to make the system more robust and adaptive against illumination variation and camera optics, the images were first processed for feature extraction and then used to train machine learning classifiers. According to the results, TMB + KI showed the highest classification accuracy (97.8%) with inter-phone repeatability at t = 30 s under versatile illumination and maintained its accuracy for 10 minutes. In addition, the performance of the system was also comparable to two different commercially available H2O2 kits in real samples.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering Graduate Program, İzmir Katip Çelebi University, 35620 Turkey.
| | - Elif Yüzer
- Department of Biomedical Engineering Graduate Program, İzmir Katip Çelebi University, 35620 Turkey
| | - Volkan Kılıç
- Department of Electrical and Electronics Engineering Graduate Program, İzmir Katip Çelebi University, 35620 Turkey. .,Department of Electrical and Electronics Engineering, İzmir Katip Çelebi University, 35620 Turkey
| | - Mustafa Şen
- Department of Biomedical Engineering Graduate Program, İzmir Katip Çelebi University, 35620 Turkey.,Department of Biomedical Engineering, İzmir Katip Çelebi University, 35620 Turkey.
| |
Collapse
|
10
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
11
|
Sardaremelli S, Hasanzadeh M, Razmi H. Chemical binding of horseradish peroxidase enzyme with poly beta-cyclodextrin and its application as molecularly imprinted polymer for the monitoring of H 2 O 2 in human plasma samples. J Mol Recognit 2021; 34:e2884. [PMID: 33393155 DOI: 10.1002/jmr.2884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022]
Abstract
In this study, a selective and sensitive molecular imprinting-based electrochemical sensors, for horseradish peroxidase (HRP) entrapment was fabricated using electro polymerization of ß-Cyclodextrin (ß-CD) on the surface of glassy carbon electrode. Poly beta-cyclodextrin P(ß-CD) provide efficient surface area for self-immobilization of HRP as well as improve imprinting efficiency. The proposed imprinted biosensor successfully utilized for detection of HRP with excellent analytical results which linear range is 0.1 mg/mL to 10 ng/mL with LOD of 2.23 ng/mL. Furthermore, electrocatalytical activity of the prepared biosensor toward the reduction of hydrogen peroxide was investigated in the ranges of 1 to 15 μM with a detection limit of 0.4 μM by using chronoamperometry technique. The developed biosensor was used for the detection of hydrogen peroxide in unprocessed human plasma sample.
Collapse
Affiliation(s)
- Sanam Sardaremelli
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Habib Razmi
- Analytical Chemistry Research Lab, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
HOU XY, TONG YK, ZHU FG, XIA QF, TIAN MM. Graphene Oxide-based Magnetic Boronate-affinity Adsorbent for Extraction of Horseradish Peroxidase. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60067-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Felisardo RJ, Luque AM, Silva QS, Soares CM, Fricks AT, Lima ÁS, Cavalcanti EB. Biosensor of horseradish peroxidase immobilized onto self-assembled monolayers: Optimization of the deposition enzyme concentration. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Pidenko PS, Pidenko SA, Skibina YS, Zacharevich AM, Drozd DD, Goryacheva IY, Burmistrova NA. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal Bioanal Chem 2020; 412:6509-6517. [PMID: 32388579 DOI: 10.1007/s00216-020-02689-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
A new facile and fast approach to the synthesis of polyaniline (PANi) molecularly imprinted polymers (MIPs) based on aniline oxidative chemical polymerization was proposed for protein recognition. For the first time, a surface imprinting strategy was implemented for the synthesis of PANi MIPs on the inner surface of soft glass polycapillaries (PC) with a large (2237) number of individual microcapillaries. Two different PANi layers-(i) PANi film and (ii) protein imprinted PANi nanowires-were synthesized sequentially. Uniform and highly stable PANi film was synthesized by oxidative polymerization at pH< 1. The synthesis of PANi MIPs on the PANi film pre-coated surface improved the reproducibility of PANi MIP formation. PANi MIP nanowires were synthesized at "mild" conditions (pH > 4.5) to preserve the protein template activity. The binding of horseradish peroxidase (HRP) molecules on the PANi MIP selective sites was confirmed by photometry (TMB chromogenic reaction), SEM images, and FTIR spectroscopy. The developed PANi MIPs enable HRP determination with a limit of detection (LOD) as low as 1.00 and 0.07 ng mL-1 on the glass slips and PC, respectively. The PANi MIPs are characterized by high stability; they are reversible and selective to HRP. The proposed approach allows PANi MIPs to be obtained for proteins on different supports and to create new materials for separation and sensing. Graphical abstract.
Collapse
Affiliation(s)
- Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Sergei A Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Yulia S Skibina
- SPE LLC Nanostructured Glass Technology, Saratov, 410033, Russia
| | - Andrey M Zacharevich
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Daniil D Drozd
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Irina Yu Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012.
| |
Collapse
|
15
|
Zhang X, Du X. Creation of glycoprotein imprinted self-assembled monolayers with dynamic boronate recognition sites and imprinted cavities for selective glycoprotein recognition. SOFT MATTER 2020; 16:3039-3049. [PMID: 32129364 DOI: 10.1039/c9sm02313e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glycoproteins are involved in the pathogenesis and development of many diseases and are used as biomarkers for disease diagnosis. It is highly desirable to develop highly sensitive and selective methods for the detection of glycoproteins without the use of antibodies. Imprinting of proteins represents one of the most challenging tasks. Glycoprotein imprinted self-assembled monolayers (SAMs) were created, for the first time, from an oligo(ethylene glycol) (OEG) terminated 1,2-dithiolane derivative linked through an alkyl chain incorporated with two amide groups (DHAP) and combined functional thiols of p-mercaptophenylboronic acid (PMBA) and p-aminothiophenol (PATP) in aqueous media, without the use of polymerization initiators. Combined action of PMBA and PATP was essential for the development of boronate recognition sites for glycoproteins at the physiological pH, attributed to the water molecule-mediated Lewis acid-base interactions between the electron-deficient PMBA and the electron-rich PATP. DHAP played key roles not only in cementation of imprinted cavities by means of double hydrogen bond networks through the amide groups but also in resistance to nonspecific protein binding by terminal OEG moieties, as well as hydrogen bond binding sites from the amide groups exposed to imprinted cavities. The created glycoprotein imprinted SAMs showed excellent recognition selectivity of target glycoproteins. The strategy for tailor-made glycoprotein imprinted SAMs explores a new avenue to the creation of intelligent biomaterials and fabrication of chemosensors.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | | |
Collapse
|
16
|
Sardaremelli S, Razmi H, Hasanzadeh M, Shadjou N. A novel bioassay for the monitoring of hydrogen peroxide in human plasma samples based on binding of horseradish peroxidase-conjugated prostate specific antigen to poly (toluidine blue) as imprinted polymer receptor. Int J Biol Macromol 2020; 145:311-324. [DOI: 10.1016/j.ijbiomac.2019.12.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
|
17
|
Ozcelikay G, Kurbanoglu S, Zhang X, Kosak Soz C, Wollenberger U, Ozkan SA, Yarman A, Scheller FW. Electrochemical MIP Sensor for Butyrylcholinesterase. Polymers (Basel) 2019; 11:polym11121970. [PMID: 31801184 PMCID: PMC6960762 DOI: 10.3390/polym11121970] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
| | - Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Cagla Kosak Soz
- Faculty of Science, Material Science and Technologies, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul 34820, Turkey;
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Sibel A. Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
- Correspondence: (A.Y.); (F.W.S.)
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
- Correspondence: (A.Y.); (F.W.S.)
| |
Collapse
|
18
|
Cheng X, Sun L, Li R, Huang Y, Xu H, Wang Z, Li ZL, Jiang H, Ma J. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac. Mikrochim Acta 2019; 186:731. [DOI: 10.1007/s00604-019-3831-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 01/27/2023]
|
19
|
Zigah D, Lojou E, Poulpiquet A. Micro‐ and Nanoscopic Imaging of Enzymatic Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201901065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dodzi Zigah
- Univ. Bordeaux, CNRSBordeaux INP ISM UMR 5255 33400 Talence France
| | - Elisabeth Lojou
- Aix-Marseille Univ., CNRSBIP, UMR 7281 31 Chemin Aiguier 13009 Marseille France
| | - Anne Poulpiquet
- Aix-Marseille Univ., CNRSBIP, UMR 7281 31 Chemin Aiguier 13009 Marseille France
| |
Collapse
|
20
|
Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J Med Chem 2019; 63:1-22. [PMID: 31502840 DOI: 10.1021/acs.jmedchem.9b00803] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inherently conducting polymers (ICPs) are a specific category of synthetic polymers with distinctive electro-optic properties, which involve conjugated chains with alternating single and double bonds. Polyaniline (PANI), as one of the most well-known ICPs, has outstanding potential applications in biomedicine because of its high electrical conductivity and biocompatibility caused by its hydrophilic nature, low-toxicity, good environmental stability, and nanostructured morphology. Some of the limitations in the use of PANI, such as its low processability and degradability, can be overcome by the preparation of its blends and nanocomposites with various (bio)polymers and nanomaterials, respectively. This review describes the state-of-the-art of biological activities and applications of conductive PANI-based nanocomposites in the biomedical fields, such as antimicrobial therapy, drug delivery, biosensors, nerve regeneration, and tissue engineering. The latest progresses in the biomedical applications of PANI-based nanocomposites are reviewed to provide a background for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR) , Naples 80125 , Italy
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Shadad Ronak Commercialization Company , Pasdaran Street , Tehran , 1947 , Iran
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering , Politecnico di Milano Technical University , Milano 20133 , Italy
| | - Ahmad Motahari
- Young Researchers and Elite Club, Jahrom Branch , Islamic Azad University , Jahrom 74147-85318 , Iran
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology , University of Applied Sciences and Arts of Southern Switzerland , Manno 6928 , Switzerland.,Department of Surgical Sciences, Faculty of Medical Sciences, Orthopaedic Clinic , IRCCS A.O.U. San Martino , Genova 16132 , Italy.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Donaueschingenstrasse 13 , 1200 Vienna , Austria
| |
Collapse
|
21
|
Fabrication of a thermal responsive hemoglobin (Hb) biosensor via Hb-catalyzed eATRP on the surface of ZnO nanoflowers. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|