1
|
Pathiraja G, Bonner CDJ, Obare SO. Recent Advances of Enzyme-Free Electrochemical Sensors for Flexible Electronics in the Detection of Organophosphorus Compounds: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031226. [PMID: 36772265 PMCID: PMC9918968 DOI: 10.3390/s23031226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/10/2023]
Abstract
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
Collapse
Affiliation(s)
- Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Chartanay D. J. Bonner
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Sherine O. Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| |
Collapse
|
2
|
Individual and Simultaneous Electrochemical Detection of Bisphenol A and Bisphenol S in Food Samples Using Triethylenetetramine Functionalized Multi-Walled Carbon Nanotubes. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Memon AF, Ameen S, Khand NH, Qambrani N, Buledi JA, Junejo B, Solangi AR, Taqvi SIH, Dragoi EN, Zare N, Karimi F, Vasseghian Y. Electrochemical monitoring of bisphenol-s through nanostructured tin oxide/Nafion/GCE: A solution to environmental pollution. CHEMOSPHERE 2022; 303:135170. [PMID: 35640684 DOI: 10.1016/j.chemosphere.2022.135170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, phenolic compounds have been broadly exploited in the industries to be utilized in several applications including polycarbonate plastic, food containers, epoxy resins, etc. One of the major compounds in phenolics is Bisphenol-S (BPS) which has dominantly replaced Bisphenol-A in several applications. Phenolic compounds are extensively drained into the environment without proper treatment and cause several health hazards. Thus, to tackle this serious problem an electrochemical sensor based on SnO2/GCE has been successfully engineered to monitor the low-level concentration of BPS in water samples. The fabrication of SnO2 nanoparticles (SnO2 NPs) was confirmed through FTIR, XRD, and TEM to examine the size, crystallinity, internal texture, and functionalities of the prepared material. The fabricated material was exploited as a chemically modified sensor for the determination of BPS in water samples collected from different sources. Under optimal conditions such as scan sweep 100 mV/s, PBS electrolyte pH of 6, potential window (0.3-1.3 V), the proposed sensor manifested an excellent response for BPS. The LOD of the present method for BPS was calculated as 0.007 μM, respectively. Moreover, the stability and selectivity profile of SnO2/GCE for BPS in the real matrix was examined to be outstanding.
Collapse
Affiliation(s)
- Almas F Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Bindia Junejo
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
4
|
Mehmandoust M, Pourhakkak P, Tiris G, Karimi-Maleh H, Erk N. A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe 2O 4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation. ENVIRONMENTAL RESEARCH 2022; 212:113264. [PMID: 35427589 DOI: 10.1016/j.envres.2022.113264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
An ultrasensitive and selective voltammetric sensor with ultra-trace level detection limit is introduced for idarubicin (IDA) determination in real samples. The as-synthesized nanocomposite was characterized by several techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), and Field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The limit of detection (LOD) of the developed sensor for idarubicin is 1.0 nM, and the response is found to be in the dynamic concentration range of 0.01-1.9 μmol/L in a Britton-Robinson buffer (B-R, pH = 6.0). Moreover, the fabricated electrode illustrated high selectivity with good repeatability and reproducibility for diagnosing idarubicin as an anthracycline antileukemic drug. Furthermore, to evaluate the validity of the recommended method, three real samples, including human plasma, urine, and water samples, were analyzed with satisfactory recovery and compared with high-performance liquid chromatography (HPLC). The minor groove-binding mode of interaction was also supported by docking simulation studies, emphasizing that IDA can bind to ds-DNA preferably and confirmed experimental results. The reduced assay time and the possibility of measuring a single sample with another anticancer drug without any interference are significant advantages compared to the HPLC. The developed and validated sensor could be a valuable point-of-care diagnostic tool for IDA quantification in patients.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Gizem Tiris
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, 34093, Istanbul, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box, 17011, South Africa.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
5
|
Wang H, Wang Y, Zhang C. Novel Electrochemical Sensor for the Determination of Bisphenol A Using a Molybdenum(IV) Sulfide Quantum Dots Polysodium Styrene Sulfonate Functionalized Reduced Graphene Oxide Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2066111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Haiyang Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Cuijie Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Tajik S, Afshar AA, Shamsaddini S, Askari MB, Dourandish Z, Garkani Nejad F, Beitollahi H, Di Bartolomeo A. Fe 3O 4@MoS 2/rGO Nanocomposite/Ionic Liquid Modified Carbon Paste Electrode for Electrochemical Sensing of Dasatinib in the Presence of Doxorubicin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Saeedeh Shamsaddini
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Mohammad Bagher Askari
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Antonio Di Bartolomeo
- Physics Department “E.R. Caianiello”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
7
|
Tsekeli TR, Tshwenya L, Sebokolodi TI, Ndlovu T, Arotiba OA. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre‐silver Nanoparticle Immobilisation Platform. ELECTROANAL 2021. [DOI: 10.1002/elan.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tebogo R. Tsekeli
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | | | - Thabile Ndlovu
- Department of Chemistry University of Eswatini Kwaluseni M201 Eswatini
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
8
|
Gross MA, Moreira SGC, Pereira-da-Silva MA, Sodré FF, Paterno LG. Multilayered iron oxide/reduced graphene oxide nanocomposite electrode for voltammetric sensing of bisphenol-A in lake water and thermal paper samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142985. [PMID: 33127143 DOI: 10.1016/j.scitotenv.2020.142985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
A multilayered iron oxide/reduced graphene oxide (ION-RGO) nanocomposite electrode is reported for the voltammetric sensing of bisphenol-A (BPA). Structural characterizations reveal the nanocomposite features RGO sheets decorated with nanometric spherical ION in a mixture of maghemite and magnetite phases. ITO substrate modified with the ION-RGO multilayered film exhibits strong electrocatalytic effect toward BPA oxidation, which is made possible by Fe(III) catalysts generated at the ION's surface after scanning the electrode potential from below 0 V (vs Ag/AgCl) and followed by the RGO phase conducting the transferred electrons. Under optimized differential pulse voltammetry conditions, the proposed sensor shows three linear working ranges 0.09-1.17 (r2 = 0.999), 1.17-3.81 (r2 = 0.995) and 3.81-8.20 (r2 = 0.998), with the highest sensitivity equaling 7.76 μA cm-2/μmol L-1 and the lowest limit of detection of 15 nmol L-1. A single electrode can be used for at least twenty consecutive runs loosing less than 15% of sensitivity, whereas electrodes fabricated in different bacthes exhibit almost identical perfomances. Determination of BPA in a thermal paper sample shows no difference (at 95% confidence level) between the proposed sensor and HPLC/UV. The sensor is neither influenced by the matrix composition nor by other emerging contaminants.
Collapse
Affiliation(s)
- Marcos A Gross
- Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Sanclayton G C Moreira
- Instituto de Ciências Exatas e Naturais (ICEN), Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Marcelo A Pereira-da-Silva
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, 13560-9700 São Carlos, São Paulo, Brazil; Centro Universitário Central Paulista - UNICEP, 13563-470 São Carlos, SP, Brazil
| | - Fernando F Sodré
- Laboratório de Automação, Quimiometria e Química Ambiental, Instituto de Química, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Leonardo G Paterno
- Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
9
|
Nodehi M, Baghayeri M, Behazin R, Veisi H. Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105825] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Molecularly imprinted curcumin nanoparticles decorated paper for electrochemical and fluorescence dual-mode sensing of bisphenol A. Mikrochim Acta 2021; 188:94. [PMID: 33611643 DOI: 10.1007/s00604-021-04753-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A molecularly imprinted paper-based analytical device (MIP-μPAD) was developed for the sensing of bisphenol A (BPA). The platform was screen-printed onto a filter paper support, where the electrodes and the fluorescence μPADs were designed. Owing to its dual electrochemical and fluorescence responses, molecularly imprinted curcumin nanoparticles were used to sense BPA. The μPAD design was characterized by transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, and electrochemical techniques. The sensor design comprised a wide linear range from 1 to 200 μg L-1 with limits of detection of 0.47 ± 0.2 and 0.62 ± 0.3 μg L-1 (LOD, S/N = 3) for electrochemical and fluorescence sensing, respectively. Furthermore, the system showed good analytical performance such as selectivity, stability, and reproducibility. The feasibility of the MIP-μPAD was demonstrated for the sensing of BPA in seawater, foods, and polycarbonate plastic packaged water with recovery values of 97.2 and 101.8%.
Collapse
|
11
|
Fabrication of handmade paper sensor based on silver-cobalt doped copolymer-ionic liquid composite for monitoring of vitamin D3 level in real samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Kaya SI, Cetinkaya A, Ozkan SA. Latest Advances in Determination of Bisphenols with Nanomaterials, Molecularly Imprinted Polymers and Aptamer Based Electrochemical Sensors. Crit Rev Anal Chem 2021; 52:1223-1243. [PMID: 33475425 DOI: 10.1080/10408347.2020.1864719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contamination of environmental sources such as soils, sediments and rivers and human exposure caused by several endocrine disrupting compounds (EDCs) are considered as the most challenging issues of today's world. EDCs cover a wide variety of compounds ranging from phthalates to parabens and bisphenols (BPs) are the leading group among them. BPs are widely used during the production of different plastic materials such as food and beverage containers, toys, medical equipment and baby bottles that we use in every aspect of our lives. BPs may migrate from those products to different media under certain conditions and this situation causes chronic exposure for humans and other creatures in the environment. Especially bisphenol A (BPA) and its other analogues such as bisphenol F, bisphenol S and tetrabromobisphenol that have similar structures and are preferred as alternatives to BPA cause harmful adverse effects such as endocrine disruption, neurotoxicity, genotoxicity and cytotoxicity. There are legal restrictions and prohibitions by the European Union (EU) in order to prevent possible harmful effects. Therefore, it is important to develop highly sensitive, fast, easy to use and cheap sensors for the determination of BPs in biological, environmental and commercial samples. Electrochemical sensors, which are one of the most widely, used analytical techniques, provide these conditions. Additionally, it is possible to enhance the performance of electrochemical sensors with nanomaterials, molecularly imprinted polymers or aptamer based technologies. This review aims to give comprehensive information about BPs with summarizing most recent applications of electrochemical sensors for their determination in different samples.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Pang YH, Huang YY, Shen XF, Wang YY. Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal Chim Acta 2021; 1142:99-107. [PMID: 33280708 DOI: 10.1016/j.aca.2020.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
In this work, electro-enhanced solid-phase microextraction (EE-SPME) and covalent organic framework (COF) were adopted to improve the extraction efficiency. A conductive COF synthesized of 2,6-diaminoanthraquinone (DQ) and 1,3,5-triformylphloroglucinol (TP) was in situ bonded to the stainless steel wire via facile solution-phase approach and used as the EE-SPME fiber coating to preconcentrate a typical endocrine disruptor bisphenol A (BPA). Compared with conventional SPME, the DQTP bonded fiber coupled with EE-SPME device exhibited higher extraction efficiency and achieved extraction equilibrium within 10 min. The proposed approach based on EE-SPME and gas chromatography coupled with flame ionization detector gave a linear range of 0.05-10 μg mL-1 and detection limit of 3 μg L-1 (S/N = 3) with good precision (<6.7%) and reproducibility (<7.1%) spiked with 0.1, 0.5, 1.0 μg mL-1 BPA. Quantitative determination of BPA in extracts of food packagings (mineral water bottles, milk boxes and milk tea cups) was achieved with recoveries from 88.6 to 118.0%.
Collapse
Affiliation(s)
- Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
15
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Subnanomolar detection of promethazine abuse using a gold nanoparticle-graphene nanoplatelet-modified electrode. Mikrochim Acta 2020; 187:646. [PMID: 33165663 DOI: 10.1007/s00604-020-04616-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
A simple, sensitive, and effective adsorptive stripping voltammetric sensor for the detection of trace-level promethazine was created based on a gold nanoparticle-graphene nanoplatelet-modified glassy carbon electrode (AuNP-GrNP/GCE). AuNP-GrNP nanocomposites were synthesized using an electroless deposition process, and the morphology was characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The electrochemical behavior and detection of promethazine at the AuNP-GrNP/GCE were investigated utilizing cyclic voltammetry and adsorptive stripping voltammetry. The AuNP-GrNP/GCE showed outstanding synergistic electrochemical activity for promethazine oxidation, a highly active surface area, great adsorptivity, and outstanding catalytic properties. The electrolyte pH, amount of AuNP-GrNP nanocomposite, preconcentration potential (vs. Ag/AgCl), and time were optimized to obtain a high performance electrochemical sensor. Under optimal conditions, the proposed sensor displayed two linear concentration ranges from 1.0 nmol L-1 to 1.0 μmol L-1 and from 1.0 to 10 μmol L-1. The limits of detection and quantitation were 0.40 and 1.4 nmol L-1, respectively. This sensor displayed high sensitivity, a capability for rapid analysis, and excellent repeatability and reproducibility. The developed sensor was effective and practical for promethazine detection in biological fluids and forensic samples, and the obtained results exhibited excellent agreement with the results obtained using the method described in the British Pharmacopoeia. Graphical abstract.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.,Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand. .,Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
16
|
Chaiyo S, Jampasa S, Thongchue N, Mehmeti E, Siangproh W, Chailapakul O, Kalcher K. Wide electrochemical window of screen-printed electrode for determination of rapamycin using ionic liquid/graphene composites. Mikrochim Acta 2020; 187:245. [PMID: 32211982 DOI: 10.1007/s00604-020-4190-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
A disposable screen-printed carbon electrode (SPCE) modified with an ionic liquid/graphene composite (IL/G) exhibits a wider potential window, excellent conductivity, and specific surface area for the improvement in the voltammetric signal of rapamycin detection. The modified composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of rapamycin at the modified SPCE was investigated by cyclic and square wave voltammetry in 60:40 EtOH: 0.1 M LiClO4 at pH 5.0. A high reproducible and well-defined peak with a high peak current were obtained for rapamycin detection at a position potential of + 0.98 V versus Ag/AgCl. Under the optimized conditions, the rapamycin concentration in the range 0.1 to 100 μM (R2 = 0.9986) had a good linear relation with the peak current. The detection limit of this method was 0.03 μM (3SD/slope). The proposed device can selectively detect rapamycin in the presence of commonly interfering compounds. Finally, the proposed method was successfully applied to determine rapamycin in urine and blood samples with excellent recoveries. These devices are disposable and cost-effective and might be used as an alternative tool for detecting rapamycin in biological samples and other biological compounds. Graphical abstract Schematic presentation of wide electrochemical window and disposable screen-printed sensor using ionic liquid/graphene composite for the determination of rapamycin. This composite can enhance the oxidation current and expand the potential for rapamycin detection.
Collapse
Affiliation(s)
- Sudkate Chaiyo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand. .,Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand.
| | - Sakda Jampasa
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Natnicha Thongchue
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Eda Mehmeti
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University, Universitätsplatz 1, A-8010, Graz, Austria
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University, Universitätsplatz 1, A-8010, Graz, Austria
| |
Collapse
|
17
|
Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Mikrochim Acta 2020; 187:145. [DOI: 10.1007/s00604-020-4124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
|
18
|
Simple flow injection system for non-enzymatic glucose sensing based on an electrode modified with palladium nanoparticles-graphene nanoplatelets/mullti-walled carbon nanotubes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Wang X, Shang L, Zhang W, Jia LP, Ma RN, Jia WL, Wang HS. An ultrasensitive luminol cathodic electrochemiluminescence probe with highly porous Pt on ionic liquid functionalized graphene film as platform for carcinoembryonic antigen sensing. Biosens Bioelectron 2019; 141:111436. [DOI: 10.1016/j.bios.2019.111436] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
20
|
Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, Mukdasai S. Zinc/Aluminium⁻Quinclorac Layered Nanocomposite Modified Multi-Walled Carbon Nanotube Paste Electrode for Electrochemical Determination of Bisphenol A. SENSORS 2019; 19:s19040941. [PMID: 30813385 PMCID: PMC6413131 DOI: 10.3390/s19040941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10−8–7.0 × 10−7 M (R2 = 0.9876), 1.0 × 10−6–1.0 × 10−5 M (R2 = 0.9836) and 3.0 × 10−5–3.0 × 10−4 M (R2 = 0.9827) with a limit of detection of 4.4 × 10−9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
Collapse
Affiliation(s)
- Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, West Sumatera 25171, Indonesia.
| | - Nurashikin Abd Azis
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Illyas Md Isa
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Norhayati Hashim
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Syahrizal Ahmad
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Idris Saidin
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Siriboon Mukdasai
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|