1
|
Zaffora A, Giordano E, Volanti VM, Iannucci L, Grassini S, Gatto I, Santamaria M. Effect of TiO 2 and Al 2O 3 Addition on the Performance of Chitosan/Phosphotungstic Composite Membranes for Direct Methanol Fuel Cells. MEMBRANES 2023; 13:210. [PMID: 36837712 PMCID: PMC9964683 DOI: 10.3390/membranes13020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Composite chitosan/phosphotungstic acid (CS/PTA) with the addition of TiO2 and Al2O3 particles were synthesized to be used as proton exchange membranes in direct methanol fuel cells (DMFCs). The influence of fillers was assessed through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, liquid uptake, ion exchange capacity and methanol permeability measurements. The addition of TiO2 particles into proton exchange membranes led to an increase in crystallinity and a decrease in liquid uptake and methanol permeability with respect to pristine CS/PTA membranes, whilst the effect of the introduction of Al2O3 particles on the characteristics of membranes is almost the opposite. Membranes were successfully tested as proton conductors in a single module DMFC of 1 cm2 as active area, operating at 50 °C fed with 2 M methanol aqueous solution at the anode and oxygen at the cathode. Highest performance was reached by using a membrane with TiO2 (5 wt.%) particles, i.e., a power density of 40 mW cm-2, almost doubling the performance reached by using pristine CS/PTA membrane (i.e., 24 mW cm-2).
Collapse
Affiliation(s)
- Andrea Zaffora
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Elena Giordano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Valentina Maria Volanti
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Leonardo Iannucci
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Sabrina Grassini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Irene Gatto
- Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”(ITAE), Consiglio Nazionale delle Ricerche (CNR), Via Salita S. Lucia sopra Contesse 5, 98126 Messina, Italy
| | - Monica Santamaria
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
2
|
Kudashova DS, Kononenko NA, Brovkina MA, Falina IV. A Study of the Degradation of a Perfluorinated Membrane during Operation in a Proton-Exchange Membrane Fuel Cell. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s251775162201005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
A Comparative Study of Equivalent Circuit Models for Electro-Chemical Impedance Spectroscopy Analysis of Proton Exchange Membrane Fuel Cells. ENERGIES 2022. [DOI: 10.3390/en15010386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrochemical impedance spectroscopy is one of the important tools for the performance analysis and diagnosis of proton exchange membrane fuel cells. The equivalent circuit model is an effective method for electrochemical impedance spectroscopy resolution. In this paper, four typical equivalent circuit models are selected to comprehensively compare and analyze the difference in the fitting results of the models for the electrochemical impedance spectroscopy under different working conditions (inlet pressure, stoichiometry, and humidity) from the perspective of the fitting accuracy, change trend of the model parameters, and the goodness of fit. The results show that the fitting accuracy of the model with the Warburg element is the best for all under each working condition. When considering the goodness of fit, the model with constant phase components is the best choice for fitting electrochemical impedance spectroscopy under different inlet pressure and air stoichiometry. However, under different air humidity, the model with the Warburg element is best. This work can help to promote the development of internal state analysis, estimation, and diagnosis of the fuel cell based on the equivalent circuit modeling of electrochemical impedance spectroscopy.
Collapse
|
4
|
Gatto I, Saccà A, Sebastián D, Baglio V, Aricò AS, Oldani C, Merlo L, Carbone A. Influence of Ionomer Content in the Catalytic Layer of MEAs Based on Aquivion ® Ionomer. Polymers (Basel) 2021; 13:polym13213832. [PMID: 34771388 PMCID: PMC8587568 DOI: 10.3390/polym13213832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied, considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures (80-95 °C), low pressure, and reduced humidity ((50% RH). %). The best fuel cell performance was found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a maximum catalyst utilization.
Collapse
Affiliation(s)
- Irene Gatto
- CNR-ITAE, Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98125 Messina, Italy; (A.S.); (V.B.); (A.S.A.); (A.C.)
- Correspondence: ; Tel.: +39-090-624-231; Fax: +39-090-624-247
| | - Ada Saccà
- CNR-ITAE, Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98125 Messina, Italy; (A.S.); (V.B.); (A.S.A.); (A.C.)
| | - David Sebastián
- Instituto de Carboquímica, CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain;
| | - Vincenzo Baglio
- CNR-ITAE, Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98125 Messina, Italy; (A.S.); (V.B.); (A.S.A.); (A.C.)
| | - Antonino Salvatore Aricò
- CNR-ITAE, Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98125 Messina, Italy; (A.S.); (V.B.); (A.S.A.); (A.C.)
| | - Claudio Oldani
- Solvay Specialty Polymers, Viale Lombardia 20, 20021 Bollate, Italy; (C.O.); (L.M.)
| | - Luca Merlo
- Solvay Specialty Polymers, Viale Lombardia 20, 20021 Bollate, Italy; (C.O.); (L.M.)
| | - Alessandra Carbone
- CNR-ITAE, Institute for Advanced Energy Technologies “N. Giordano”, Via Salita S. Lucia sopra Contesse 5, 98125 Messina, Italy; (A.S.); (V.B.); (A.S.A.); (A.C.)
| |
Collapse
|
5
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
6
|
Polydopamine Coated CeO 2 as Radical Scavenger Filler for Aquivion Membranes with High Proton Conductivity. MATERIALS 2021; 14:ma14185280. [PMID: 34576507 PMCID: PMC8469177 DOI: 10.3390/ma14185280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
CeO2 nanoparticles were coated with polydopamine (PDA) by dopamine polymerization in water dispersions of CeO2 and characterized by Infrared and Near Edge X-ray Absorption Fine Structure spectroscopy, Transmission Electron Microscopy, Thermogravimetric analysis and X-ray diffraction. The resulting materials (PDAx@CeO2, with x = PDA wt% = 10, 25, 50) were employed as fillers of composite proton exchange membranes with Aquivion 830 as ionomer, to reduce the ionomer chemical degradation due to hydroxyl and hydroperoxyl radicals. Membranes, loaded with 3 and 5 wt% PDAx@CeO2, were prepared by solution casting and characterized by conductivity measurements at 80 and 110 °C, with relative humidity ranging from 50 to 90%, by accelerated ex situ degradation tests with the Fenton reagent, as well as by in situ open circuit voltage stress tests. In comparison with bare CeO2, the PDA coated filler mitigates the conductivity drop occurring at increasing CeO2 loading especially at 110 °C and 50% relative humidity but does not alter the radical scavenger efficiency of bare CeO2 for loadings up to 4 wt%. Fluoride emission rate data arising from the composite membrane degradation are in agreement with the corresponding changes in membrane mass and conductivity.
Collapse
|
7
|
Primachenko ON, Marinenko EA, Odinokov AS, Kononova SV, Kulvelis YV, Lebedev VT. State of the art and prospects in the development of proton‐conducting perfluorinated membranes with short side chains: A review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Oleg N. Primachenko
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Elena A. Marinenko
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Alexey S. Odinokov
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
- Russian Research Center of Applied Chemistry Saint Petersburg Russia
| | - Svetlana V. Kononova
- Laboratory of synthesis of high temperature resistant polymers Institute of Macromolecular Compounds of Russian Academy of Sciences Saint Petersburg Russia
| | - Yuri V. Kulvelis
- Neutron research department Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute” Gatchina Russia
| | - Vasily T. Lebedev
- Neutron research department Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute” Gatchina Russia
| |
Collapse
|
8
|
Li T, Shen J, Chen G, Guo S, Xie G. Performance Comparison of Proton Exchange Membrane Fuel Cells with Nafion and Aquivion Perfluorosulfonic Acids with Different Equivalent Weights as the Electrode Binders. ACS OMEGA 2020; 5:17628-17636. [PMID: 32715248 PMCID: PMC7377320 DOI: 10.1021/acsomega.0c02110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 06/07/2023]
Abstract
A perfluorosulfonic acid (PFSA) ionomer, used as the proton conductor in the catalyst layer, influences significantly the performance of proton exchange membrane fuel cell catalyst-coated membrane (CCM). In this paper, SSC-CCM is prepared by the SSC-PFSA (Aquivion, EW 720) ionomer, and the comparative sample (LSC-CCM) is based on the LSC-PFSA ionomer (Nafion, EW 1100). Compared with LSC-CCM, SSC-CCM shows higher porosity, larger electrochemical surface area (ECSA), and smaller high-frequency resistance. Polarization curves of SSC-CCM tested by the short stack show better performance than those of LSC-CCM, especially under the lower relative humidity operations. Moreover, the SSC-CCM outputs higher voltage and is more stable in the dynamic process with temperature continuously increasing under lower relative humidity operation. Such excellent performance of SSC-CCM is confirmed from the higher proton conductivity of SSC-PFSA under low relative humidity. These results indicate that the SSC-PFSA ionomer could be employed for the CCM catalyst layer under the operation conditions of low relative humidity and dynamic running for automotive applications.
Collapse
Affiliation(s)
- Ting Li
- The
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- Energy
Conversion R&D Center, Central Academy
of Dongfang Electric Corporation, Chengdu 611731, China
| | - Jiabin Shen
- The
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Guangying Chen
- Energy
Conversion R&D Center, Central Academy
of Dongfang Electric Corporation, Chengdu 611731, China
| | - Shaoyun Guo
- The
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Guangyou Xie
- Energy
Conversion R&D Center, Central Academy
of Dongfang Electric Corporation, Chengdu 611731, China
| |
Collapse
|