1
|
Li C, Ma Y, Fan C, He C, Ma S. Highly sensitive and selective detection of amoxicillin using molecularly imprinted ratiometric fluorescent nanosensor based on quantum dots. Mikrochim Acta 2024; 191:525. [PMID: 39120793 DOI: 10.1007/s00604-024-06593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
A dual-emission ratiometric fluorescence sensor (CDs@CdTe@MIP) with a self-calibration function was successfully constructed for AMO detection. In the CDs@CdTe@MIP system, non-imprinted polymer-coated CDs and molecule-imprinted polymer-coated CdTe quantum dots were used as the reference signal and response elements, respectively. The added AMO quenched the fluorescence of the CdTe quantum dots, whereas the fluorescence intensity of the CDs remained almost unchanged. The AMO concentration was monitored using the fluorescence intensity ratio (log(I647/I465)0/(I647/I465)) to reduce interference from the testing environment. The sensor with a low detection limit of 0.15 μg/L enabled detection of the AMO concentration within 6 min. The ratiometric fluorescence sensor was used to detect AMO in spiked pork samples; it exhibited a high recovery efficiency and relative standard deviation (RSD) of 97.94-103.70% and 3.77-4.37%, respectively. The proposed highly sensitive and selective platform opens avenues for sensitive, reliable, and rapid determination of pharmaceuticals in the environment and food safety monitoring using ratiometric sensors.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Cheng Fan
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Chong He
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, Shaanxi, 710048, China
| | - Siyue Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
2
|
Shi X, Xie Y, Chen L, Lu J, Zhang L, Sun D. Combining quasi-ZIF-67 hybrid nanozyme and G-quadruplex/hemin DNAzyme for highly sensitive electrochemical sensing. Bioelectrochemistry 2023; 149:108278. [PMID: 36195024 DOI: 10.1016/j.bioelechem.2022.108278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/08/2022]
Abstract
Zeolitic imidazolate frameworks (ZIFs), a famous subfamily of metal-organic frameworks (MOFs), are considered promising electrocatalysts. Herein, ZIF-67 was selected as an electrocatalyst for designing electrochemical sensors due to having the best electrocatalytic activity in ZIFs. To overcome the insufficient electrocatalytic activity of ZIFs, ZIF-67 derivatives (QZIF-67-X, where X represents calcination time) were obtained by calcining at 250 °C for a certain time. The porous structure of the precursor in QZIF-67-X is maintained, exposing more active centers. QZIF-67-X could accelerate electron transfer and lead to improve the electrocatalytic performance. Moreover, QZIF-67-2 was chosen as an Au nanoparticle-supported nanocarrier to further bind G-quadruplex/hemin DNAzymes with strong catalytic activity due to the best supporting activity of QZIF-67-2 among QZIF-67-X. The synergistic catalysis of QZIF-67-2 and G-quadruplex/hemin DNAzymes effectively amplified the reduction current signal of H2O2. The linear range of the prepared electrochemical sensor was 2 μM-65 mM, and the detection limit was 1.2 μM. Moreover, the real-time detection of H2O2 from HepG2 cells was achieved by the sensor, providing a novel technique for efficient anticancer drug evaluation. These results suggested that QZIF-67 can be utilized as an efficient electrocatalyst for improving the sensitivity of sensors.
Collapse
Affiliation(s)
- Xianhua Shi
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Yixuan Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China.
| |
Collapse
|
3
|
Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z, Xiao F, Sun Y. Tuning the Redox Chemistry of Copper Oxide Nanoarchitectures Integrated with rGOP via Facet Engineering: Sensing H 2S toward SRB Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19480-19490. [PMID: 35446543 DOI: 10.1021/acsami.2c02119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ultrasensitive determination of sulfate reducing bacteria (SRB) is of great significance for their crucial roles in environmental and industrial harms together with the early detection of microbial corrosion. In this work, we report the development of highly efficient electrocatalysts, i.e., Cu2O-CuO extended hexapods (EHPs), which are wrapped on homemade freestanding graphene paper to construct a flexible paper electrode in the electrochemical sensing of the biomarker sulfide for SRB detection. Herein Cu2O-CuO EHPs have been synthesized via a highly controllable and facile approach at room temperature, where the redox centers of copper oxide nanoarchitectures are tuned via facet engineering, and then they are deposited on the graphene paper surface through an electrostatic adsorption to enable homogeneous and highly dense distribution. Owing to the synergistic contribution of high electrocatalytic activity from the Cu mixed oxidation states and abundant catalytically active facets of Cu2O-CuO EHPs and high electrical conductivity of the graphene paper electrode substrate, the resultant nanohybrid paper electrode has exhibited superb electrochemical sensing properties for H2S with a wide linear range up to 352 μM and an extremely low detection limit (LOD) of 0.1 nM with a signal-to-noise ratio of 3 (S/N = 3), as well as high sensitivity, stability, and selectivity. Furthermore, taking advantage of the good biocompatibility and mechanical flexibility, the electrochemical sensing platform based on the proposed electrode has been applied in the sensitive detection of SRB in environmental samples through the sensing of sulfide from SRB, which holds great promise for on-site and online corrosion and environmental monitoring.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ghazala Ashraf
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ayesha Aziz
- School of Biomedical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Tayyaba Iftikhar
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhanpeng Wang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fei Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
4
|
Dong S, Guo L, Chen Y, Zhang Z, Yang Z, Xiang M. Three-dimensional loofah sponge derived amorphous carbon−graphene aerogel via one-pot synthesis for high-performance electrochemical sensor for hydrogen peroxide and dopamine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Barra A, Nunes C, Ruiz-Hitzky E, Ferreira P. Green Carbon Nanostructures for Functional Composite Materials. Int J Mol Sci 2022; 23:ijms23031848. [PMID: 35163770 PMCID: PMC8836917 DOI: 10.3390/ijms23031848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier, and electrical properties of polymeric matrices employed for a wide range of applications. Reduced graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers’ method and then chemically reduced to obtain rGO. However, the chemical reduction commonly uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the final application of composites. Therefore, green chemical reducing agents and synthesis methods of carbon nanostructures should be employed. This paper reviews the state of the art regarding the green chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays, are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties in composites. Finally, the application of these carbon nanostructures in polymer composites is briefly overviewed.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Cláudia Nunes
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: (C.N.); (P.F.); Tel.: +351-234-370200 (P.F.)
| |
Collapse
|
6
|
Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK. Surface modifications and analytical applications of graphene oxide: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Liu H. Turning the Page: Advancing Detection Platforms for Sulfate Reducing Bacteria and their Perks. CHEM REC 2021; 22:e202100166. [PMID: 34415677 DOI: 10.1002/tcr.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Sulfate reducing bacteria (SRB) are blamed as main culprits in triggering huge corrosion damages by microbiologically influenced corrosion. They obtained their energy through enzymatic conversion of sulfates to sulfides which are highly corrosive. However, conventional SRB detection methods are complex, time-consuming and are not enough sensitive for reliable detection. The advanced biosensing technologies capable of overcoming the aforementioned drawbacks are in demand. So, nanomaterials being economical, environmental friendly and showing good electrocatalytic properties are promising candidates for electrochemical detection of SRB as compared with antibody based assays. Here, we summarize the recent advances in the detection of SRB using different techniques such as PCR, UV visible method, fluorometric method, immunosensors, electrochemical sensors and photoelectrochemical sensors. We also discuss the SRB detection based on determination of sulfide, typical metabolic product of SRB.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.,Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ayesha Aziz
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ghazala Ashraf
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|