1
|
Akbari H, Rahimnejad M, Amani H, Ezoji H. Advancements in electrochemical sensor technology for warfarin detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8103-8118. [PMID: 39565275 DOI: 10.1039/d4ay01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Warfarin (WA), the most prescribed oral anticoagulant in patients with atrial fibrillation, is widely utilized for the treatment of various diseases, such as vascular disorders, venous thrombosis, and atrial fibrillation. However, its abnormal concentration is linked to a variety of disorders and diseases, namely bleeding while brushing teeth, skin tissue issues, hair loss, and chest pain. Therefore, WA monitoring in blood serum is vital due to its narrow therapeutic window. Accordingly, WA determination has been conducted using various methods, such as high-performance liquid chromatography, fluorescent, surface-enhanced Raman scattering, and electrochemical methods. Electrochemical methods have received considerable attention due to their outstanding selectivity, remarkable sensitivity, great time efficiency, and cost-effectiveness. Herein, a comprehensive literature survey on electrochemical methods for determining WA is presented. This review discusses the development of various chemically modified electrodes (CMEs). These CMEs, such as multi-wall carbon nanotubes, molecularly imprinted polymers, metal oxide nanoparticles, and polymer nanocomposites, owing to their morphology and structure, high selectivity, high conductivity, and high volume/area ratio, are designed to overcome the limitations of bare electrodes, which include reduced electrocatalytic activity, slower electron transfer rates, and poor sensitivity. Also, this review presents the advantages and disadvantages of various modified electrodes applied in WA detection.
Collapse
Affiliation(s)
- Hassan Akbari
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hossein Amani
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hoda Ezoji
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| |
Collapse
|
2
|
Amayreh M, Hourani MK. Enantioselective electrochemical detection of a L-and D-serine at polyvinylpyrrolidone-modified platinum electrode. Bioanalysis 2024; 16:1219-1227. [PMID: 39564780 PMCID: PMC11727866 DOI: 10.1080/17576180.2024.2422209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Aim: By modifying the Pt electrode with polyvinylpyrrolidone, the distinct oxidation potentials of L and D-serine were markedly increased for both isomers.Methods & results: CV was used for Pt electrode modification with PVP. Twenty cycles was reasonable for Pt modification. K3[Fe(CN)6] CV experiments investigated reversibility of the Fe(III) redox reaction and the enhancement of electron transfer at the PVP-Pt electrode. L and D-serine showing an oxidation peak potential at 0.394 V and 0.468 V, respectively. A linear relationship between the anodic oxidation current extracted from the CVs and the standard concentrations of L-serine and D-serine solutions was obtained with R2 = 0.99. The dynamic range for D-serine was from 0.5 to 20 mM with a LOD of 0.16 mM, while for L-serine, was from 2.5 to 20 mM with a detection limit of 0.27 mM. Using DPV, the dynamic range was 0.05-1.0 µM for D-serine with a detection limit of 0.0103 µM. The standard deviation ranged from 0.212 to 0.38 across ten determinations per concentration.Conclusion: A separation by 74 mV between the oxidation peaks of L and D-serine was achieved with remarkable enhancement in oxidation current for both isomers. PVP-Pt electrode can detect D-serine in the presence of DL-serine.
Collapse
Affiliation(s)
- Mohammad Amayreh
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box, Al-Salt, 19117, Jordan
| | - Mohammed Khair Hourani
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
3
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Hesham N, Hegazy MA, Wagdy HA. Therapeutic drug monitoring of six contraindicated/co-administered drugs by simple and green RP-HPLC-PDA; application to spiked human plasma. BMC Chem 2024; 18:66. [PMID: 38581021 PMCID: PMC10998319 DOI: 10.1186/s13065-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Therapeutic drug monitoring is an important clinical testing of the drugs to monitor their concentrations in plasma in order to guarantee their optimal impact, and to avoid any side effects resulting from drug-drug interactions. A green reversed-phase high-performance liquid chromatographic method using a photodiode array detector (RP-HPLC-PDA) was developed for the simultaneous determination of three carbapenem antibiotics (Imipenem, ertapenem, and meropenem) with the co-formulated drug (cilastatin) and contraindicated drugs (probenecid and warfarin) in spiked human plasma. The separation was achieved at 25 °C using a gradient elution of a mixture of mobile phase A: methanol and mobile phase B: phosphate buffer (pH 3.0). The photodiode array detector was adjusted at 220 nm. Bioanalytical method validation was carried out as per the FDA guidelines, and the method showed good linearity ranges for the six drugs that included their Cmax levels along with low limits of quantification. Based on the results, the method was found to be accurate and precise; with high % recovery and good % RSD, respectively. The method was successfully applied to spiked human plasma, signifying a good potential to be implemented in future TDM studies of these drugs when co-administered together.
Collapse
Affiliation(s)
- Nada Hesham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
- The Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Maha A Hegazy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt.
| | - Hebatallah A Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
- The Health Research Center of Excellence, Drug Research and Development Group, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| |
Collapse
|
5
|
Yarkaeva Y, Nazyrov M, Abdullin Y, Kovyazin P, Maistrenko V. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative. Chirality 2023; 35:625-635. [PMID: 36951070 DOI: 10.1002/chir.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
For medicine and pharmaceuticals, the problem of determining and recognizing the enantiomers of biologically active compounds is an actual issue because the enantiomers of the same substance can have different effects on living organisms. This paper describes the development of an enantioselective voltammetric sensor (EVS) based on a glassy carbon electrode (GCE) modified with mesoporous graphitized carbon black Carbopack X (CpX) and a fulvene derivative (1S,4R)-2-cyclopenta-2,4-dien-1-ylidene-1-isopropyl-4-methylcyclohexane (CpIPMC) for recognition and determination of tryptophan (Trp) enantiomers. Synthesized CpIPMC was characterized by 1 H and 13 C nuclear magnetic resonance (NMR), chromatography-mass spectrometry, and polarimetry. The proposed sensor platform was studied by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Using the square-wave voltammetry (SWV), it was established that the developed sensor is an effective chiral platform for the quantitative determination of Trp enantiomers, including in a mixture and in biological fluids like urine and blood plasma, with adequate precision and recovery ranged from 96% to 101%.
Collapse
Affiliation(s)
- Yulia Yarkaeva
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Marat Nazyrov
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Yaroslav Abdullin
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| | - Pavel Kovyazin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Ufa, Russia
| | - Valery Maistrenko
- Chemistry Faculty, Ufa University of Science and Technology, Ufa, Russia
| |
Collapse
|
6
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Zagitova L, Yarkaeva Y, Zagitov V, Nazyrov M, Gainanova S, Maistrenko V. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zilberg RA, Vakulin IV, Teres JB, Galimov II, Maistrenko VN. Rational design of highly enantioselective composite voltammetric sensors using a computationally predicted chiral modifier. Chirality 2022; 34:1472-1488. [PMID: 36076310 DOI: 10.1002/chir.23502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
The use of chiral modifiers is among the simplest and most popular strategies for synthesizing enantioselective voltammetric sensors that are applied for the analysis and discrimination of enantiomerical drugs in various media. The type and structure of the chiral modifier are the key factors for the creation of enantioselectivity to a specified analyte. We suggest a novel approach to the prediction of the quality of a chiral modifier for preparing highly enantioselective sensors. The suggested approach is based on the molecular mechanics modeling of the adsorption of analyte enantiomers on chiral modifiers and on the comparison of the corresponding adsorption energies (ΔEads ). The efficiency of our approach is demonstrated using the example of cyclodextrins and chiral single-wall carbon nanotubes as chiral modifiers, and a wide range of chiral analytes. We found that the experimental enantioselectivity (ϑexp ) measured using voltammetry linearly correlates with ΔEads . The suggested approach also showed good predictive power in application to enantioselective chromatography, which further validates its general applicability.
Collapse
|
9
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chiral Selectors in Voltammetric Sensors Based on Mixed Phenylalanine/Alanine Cu(II) and Zn(II) Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10080117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A practical application composite based on mixed chelate complexes [M(S-Ala)2(H2O)n]–[M(S-Phe)2(H2O)n] (M = Cu(II), Zn(II); n = 0–1) as chiral selectors in enantioselective voltammetric sensors was suggested. The structures of the resulting complexes were studied by XRD, ESI-MS, and IR- and NMR-spectroscopy methods. It was determined that enantioselectivity depends on the metal nature and on the structure of the mixed complex. The mixed complexes, which were suggested to be chiral selectors, were stable under the experimental conditions and provided greater enantioselectivity in the determination of chiral analytes, such as naproxen and propranolol, in comparison with the amino acids they comprise. The best results shown by the mixed copper complex [Cu(S-Ala)2]–[Cu(S-Phe)2] were: ipS/ipR = 1.27 and ΔEp = 30 mV for Nap; and ipS/ipR = 1.37 and ΔEp = 20 mV for Prp. The electrochemical and analytical characteristics of the sensors and conditions of voltammogram recordings were studied by differential pulse voltammetry. Linear relationships between the anodic current and the concentrations of Nap and Prp enantiomers were achieved in the range of 2.5 × 10−5 to 1.0 × 10−3 mol L−1 for GCE/PEC-[Cu(S-Ala)2]–[Cu(S-Phe)2] and 5.0 × 10−5 to 1.0 × 10−3 for GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)], with detection limits (3 s/m) of 0.30–1.24 μM. The suggested sensor was used to analyze Nap and Prp enantiomers in urine and plasma samples.
Collapse
|
11
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
12
|
Kuzikov AV, Filippova TA, Masamrekh RA, Shumyantseva VV. Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Song P, Li Y, Yin S, Tang Y, Wang Z. Simulation-based evaluation of homogeneous electrocatalytic reaction within a thin layer modified electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Yarkaeva YA, Dubrovskii DI, Zil’berg RA, Maistrenko VN, Kornilov VM. A Voltammetric Sensor Based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820110143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Grecchi S, Arnaboldi S, Korb M, Cirilli R, Araneo S, Guglielmi V, Tomboni G, Magni M, Benincori T, Lang H, Mussini PR. Widening the Scope of “Inherently Chiral” Electrodes: Enantiodiscrimination of Chiral Electroactive Probes with Planar Stereogenicity. ChemElectroChem 2020. [DOI: 10.1002/celc.202000657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sara Grecchi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Serena Arnaboldi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Marcus Korb
- The University of Western AustraliaFaculty of Sciences, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei FarmaciIstituto Superiore di Sanità Viale Regina Elena 299 00161 Roma Italy
| | - Silvia Araneo
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Vittoria Guglielmi
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Giorgio Tomboni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Mirko Magni
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Heinrich Lang
- Technische Universität ChemnitzFaculty of Natural SciencesInstitute of Chemistry, Inorganic Chemistry Straße der Nationen 62 D-09107 Chemnitz Germany
| | - Patrizia R. Mussini
- Dipartimento di ChimicaUniversità degli Studi di Milano Via Golgi 19 20133 Milan Italy
| |
Collapse
|