1
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024; 25:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Yuan C, Li M, Wang M, Lv J, Sun Y, Lu T, Jia Y, Cao H, Lin T. Non-destructive and simultaneous development and enhancement of latent fingerprints on stainless steel based on the electrochromic effect of electrodeposited manganese oxides. Talanta 2024; 275:126148. [PMID: 38705016 DOI: 10.1016/j.talanta.2024.126148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Latent fingerprints, as one of the most frequently encountered traces in crime scene investigation and also one of the largest sources of forensic evidence, can play a critical role in determining the identity of a person who may be involved in a crime. Due to the invisible characteristic of latent fingerprints, exploring efficient techniques to visualize them (especially the ones resided on metallic surfaces) while retain the biological and chemical information (e.g., touch DNA) has become a multidisciplinary research focus. Herein we reported a new and highly sensitive electrochemical interfacial strategy of simultaneously developing and enhancing latent fingerprints on stainless steel based on synchronous electrodeposition and electrochromism of manganese oxides in a neutral aqueous electrolyte. By utilizing a specially designed device for electrochemical testing and image capture, a series of electrochemical measurements, physical characterization and image analysis have been applied to evaluate the feasibility, development accuracy and enhancement efficacy of the proposed electrochemical system. The qualitative and quantitative analysis on the in situ and ex situ fingerprint images indicates that the three levels of fingerprint features can be precisely developed and effectively enhanced. Forensic DNA typing has also been performed to reveal actual impact of the proposed electrochemical system on subsequent analysis of touch DNA in fingerprint residues. The ratio of detected loci after electrochemical treatment reaches up to 98.5 %, showing non-destructive nature of this fingerprint development and enhancement technique.
Collapse
Affiliation(s)
- Chuanjun Yuan
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China; Research Center of Crime Governance in the New Era, Criminal Investigation Police University of China, Shenyang, 110035, China.
| | - Ming Li
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China; Research Center of Crime Governance in the New Era, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Meng Wang
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China; Research Center of Crime Governance in the New Era, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Jiaming Lv
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Yifei Sun
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Tianyi Lu
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Yuxin Jia
- College of Forensic Sciences, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Haijun Cao
- Huadu District Branch, Guangzhou Municipal Public Security Bureau, Guangzhou, 510810, China
| | - Tianchun Lin
- Huadu District Branch, Guangzhou Municipal Public Security Bureau, Guangzhou, 510810, China
| |
Collapse
|
3
|
Li Y, Wan Y, Fu X, Chen J, Wu W, Feng X, Man T, Huang Y, Piao Y, Zhu L, Lei J, Deng S. Sub-Second Electrochemiluminescence Imaging Assay of SARS-CoV-2 Nucleocapsid Protein Based on Reticulation of Endo-Coreactants. Anal Chem 2024. [PMID: 38335519 DOI: 10.1021/acs.analchem.3c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The nonphotodriven electrochemiluminescence (ECL) imageology necessitates concentrated coreacting additives plus longtime exposures. Seeking biosafe and streamlined ensembles can help lower the bar for quality ECL bioimaging to which call the crystallized endo-coreaction in nanoreticula might provide a potent solution. Herein, an exo-coreactant-free ECL visualizer was fabricated out in one-pot, which densified the dyad triethylamine analogue: 1,4-diazabicyclo-[2.2.2]octane (DABCO) in the lamellar hive of 9,10-di(p-carboxyphenyl)anthracene (DPA)-Zn2+. This biligated non-noble metal-organic framework (m-MOF) facilitated a self-contained anodic ECL with a yield as much as 70% of Ru(bPy)32+ in blank phosphate buffered saline. Its featured two-stage emissions rendered an efficient and endurant CCD imaging at 1.0 V under mere 0.5 s swift snapshots and 0.1 s step-pulsed stimulation. Upon structural and spectral cause analyses as well as parametric set optimization, simplistic ECL-graphic immunoassay was mounted in the in situ imager to enact an ultrasensitive measurement of coronaviral N-protein in both signal-on and off modes by the privilege of straight surface amidation on m-MOFs, resulting in a wide dynamic range (10-4-10 ng/mL), a competent detection limit down to 56 fg/mL, along with nice precision and parallelism in human saliva tests. The overall work manifests a rudimentary endeavor in self-sufficient ECL visuality for brisk, biocompatible, and brilliant production of point-of-care diagnostic "Big Data".
Collapse
Affiliation(s)
- Yuansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuanyu Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihan Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuyu Feng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianping Lei
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210003, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Quinn H, Wang W, Werner JG, Brown KA. Screening for electrically conductive defects in thin functional films using electrochemiluminescence. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37466448 DOI: 10.1039/d3ay00687e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Multifunctional thin films in energy-related devices often must be electrically insulating where a single nanoscale defect can result in complete device-scale failure. Locating and characterizing such defects presents a fundamental problem where high-resolution imaging methods are needed to find defects, but imaging with high spatial resolution limits the field of view and thus the measurement throughput. Here, we present a novel high-throughput method for detecting sub-micron defects in insulating thin films by leveraging the electrochemiluminescence (ECL) of luminol. Through a systematic study of reagent concentrations, buffers, voltage, and excitation time, we identify optimized conditions under which it is possible to detect sub-micron defects at high-throughput. Extrapolating from the signal to background observed for detecting 440 nm wide lines and 620 nm diameter circles, we estimate the minimum detectable features to be lines as narrow as 2.5 nm in width and pinholes as small as 70 nm in radius. We further explore this method by using it to characterize a nominally insulating poly(phenylene oxide) film and find conductive defects that are cross-correlated with high-resolution atomic force microscopy to provide feedback to synthesis. Given this assay's inherent parallelizability and scalability, it is expected to have a major impact on the automated discovery of multifunctional films.
Collapse
Affiliation(s)
- Harley Quinn
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| | - Wenlu Wang
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| | - Jörg G Werner
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Keith A Brown
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Physics, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Bécue A, Champod C. Interpol review of fingermarks and other body impressions 2019 - 2022). Forensic Sci Int Synerg 2022; 6:100304. [PMID: 36636235 PMCID: PMC9830181 DOI: 10.1016/j.fsisyn.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andy Bécue
- University of Lausanne, School of Criminal Justice, Faculty of Law Criminal Justice and Public Administration, Switzerland
| | - Christophe Champod
- University of Lausanne, School of Criminal Justice, Faculty of Law Criminal Justice and Public Administration, Switzerland
| |
Collapse
|
6
|
Luo QX, Cai YJ, Mao XL, Li YJ, Zhang CR, Liu X, Chen XR, Liang RP, Qiu JD. Tuned-Potential Covalent organic framework Electrochemiluminescence platform for lutetium analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Dong R, Zhang Y, Huang J, Habibul M, Li G. Electrochemiluminescence DNA biosensor for HBV based on Coralloid Poly(Aniline‐Luminol)‐MWCNTs and Catalysis of Ferrocene. ELECTROANAL 2022. [DOI: 10.1002/elan.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem 2021; 94:336-348. [PMID: 34908412 PMCID: PMC8756390 DOI: 10.1021/acs.analchem.1c05065] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Rebeccani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Alessandra Zanut
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Claudio Ignazio Santo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| |
Collapse
|
9
|
A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ahmad M, Kumar G, Luxami V, Kaur S, Singh P, Kumar S. Fluorescence imaging of surface-versatile latent fingerprints at the second and third level using double ESIPT-based AIE fluorophore. NEW J CHEM 2021. [DOI: 10.1039/d1nj00678a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nano-aggregates of HPBI on both porous and non-porous surfaces provide fluorescent latent fingerprints with resolution up to the third level, which could be relocated on the tape.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147004
- India
| | - Satwinderjeet Kaur
- Department of Botanical and Environment Science
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Prabhpreet Singh
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| | - Subodh Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar – 143005
- India
| |
Collapse
|