1
|
dos Santos AJ, Shen H, Lanza MR, Li Q, Garcia-Segura S. Electrochemical oxidation of surfactants as an essential step to enable greywater reuse. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2024; 34:103563. [PMID: 38706941 PMCID: PMC11066849 DOI: 10.1016/j.eti.2024.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 05/07/2024]
Abstract
The practical application of electrochemical oxidation technology for the removal of surfactants from greywater was evaluated using sodium dodecyl sulfate (SDS) as a model surfactant. Careful selection of electrocatalysts and optimization of operational parameters demonstrated effective SDS removal in treating a complex greywater matrix with energy consumption below 1 kWh g-1 COD (Chemical Oxygen Demand), paving the way for a more sustainable approach to achieving surfactant removal in greywater treatment when aiming for decentralized water reuse. Chromatographic techniques identified carboxylic acids as key byproducts prior to complete mineralization. These innovative approaches represent a novel pathway for harnessing electrochemical technologies within decentralized compact devices, offering a promising avenue for further advancements in this field.
Collapse
Affiliation(s)
- Alexsandro J. dos Santos
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287–3005, United States
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP 13566–590, Brazil
| | - Hongchen Shen
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemical and Biomolecular Engineering, Department of Materials Science and NanoEngineering, and Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston 77005, USA
| | - Marcos R.V. Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP 13566–590, Brazil
| | - Qilin Li
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemical and Biomolecular Engineering, Department of Materials Science and NanoEngineering, and Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston 77005, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287–3005, United States
| |
Collapse
|
2
|
Song L, Liu C, Liang L, Ma Y, Wang X, Ma J, Li Z, Yang S. Fabrication of PbO2/PVDF/CC Composite and Employment for the Removal of Methyl Orange. Polymers (Basel) 2023; 15:polym15061462. [PMID: 36987240 PMCID: PMC10053905 DOI: 10.3390/polym15061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The in situ electrochemical oxidation process has received considerable attention for the removal of dye molecules and ammonium from textile dyeing and finishing wastewater. Nevertheless, the cost and durability of the catalytic anode have seriously limited industrial applications of this technique. In this work, the lab-based waste polyvinylidene fluoride membrane was employed to fabricate a novel lead dioxide/polyvinylidene fluoride/carbon cloth composite (PbO2/PVDF/CC) via integrated surface coating and electrodeposition processes. The influences of operating parameters (pH, Cl− concentration, current density, and initial concentration of pollutant) on the oxidation efficiency of PbO2/PVDF/CC were evaluated. Under optimal conditions, this composite achieves a 100% decolorization of methyl orange (MO), 99.48% removal of ammonium, and 94.46% conversion for ammonium-based nitrogen to N2, as well as an 82.55% removal of chemical oxygen demand (COD). At the coexistent condition of ammonium and MO, MO decolorization, ammonium, and COD removals still remain around 100%, 99.43%, and 77.33%, respectively. It can be assigned to the synergistic oxidation effect of hydroxyl radical and chloride species for MO and the chlorine oxidation action for ammonium. Based on the determination of various intermediates, MO is finally mineralized to CO2 and H2O, and ammonium is mainly converted to N2. The PbO2/PVDF/CC composite exhibits excellent stability and safety.
Collapse
Affiliation(s)
- Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- Correspondence: ; Tel.: +86-335-8387741; Fax: +86-335-8061569
| | - Cuicui Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lifen Liang
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yalong Ma
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jizhong Ma
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuqin Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Kanchanapiya P, Tantisattayakul T. Wastewater reclamation trends in Thailand. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2878-2911. [PMID: 36515195 DOI: 10.2166/wst.2022.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thailand constantly faces the problem of water scarcity, resulting from an imbalance between available water supply and increasing water demand for economic and community expansion, as well as climate change. To address this shortage, wastewater reclamation is being planned and implemented throughout the country, along with a 20-year, long-term integrated water resource management plan. Significant opportunities from municipal wastewater treatment plants (WWTPs) are dependent on the following factors: the establishment of a reuse water framework and a tangible target for treated wastewater set by local government authorities; widespread recognition and adaptation of wastewater reuse measures in the agriculture, industry, tourism and service sectors regarding climate change and water stress; and the implementation of joint investment water reuse projects between private and government agencies. However, wastewater reclamation faces some significant challenges, specifically: the limitations of regulation and monitoring for specific reuse purposes; a lack of public confidence in the water quality; the limited commercial development of reclaimed wastewater research; and difficulties in self-sustaining business models through adapting circular economy principles. This study aims to provide an overview of the wastewater reclamation, present research trends, currently operating WWTPs as well as opportunities and challenges to speed up water reuse activities in Thailand.
Collapse
Affiliation(s)
- Premrudee Kanchanapiya
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Thanapol Tantisattayakul
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand E-mail:
| |
Collapse
|
4
|
Dos Santos AJ, Fortunato GV, Kronka MS, Vernasqui LG, Ferreira NG, Lanza MRV. Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes. ENVIRONMENTAL RESEARCH 2022; 204:112027. [PMID: 34508772 DOI: 10.1016/j.envres.2021.112027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The present work investigates the electrocatalytic performance of two different morphologies of boron doped-diamond film electrode (microcrystalline diamond - MCD, and nanocrystalline diamond - NCD) used in electrochemical oxidation for the removal of the antibiotic ciprofloxacin (CIP). A thorough study was conducted regarding the formation of the MCD and NCD films through the adjustment of methane in CH4/H2 gas mixture, and the two films were compared in terms of crystalline structure, apparent doping level, and electrochemical properties. The physicochemical results showed that the NCD film had higher sp2 carbon content and greater doping level; this contributed to improvements in its surface roughness, as well as its specific capacitance and charge transfer, which consequently enhanced its electrocatalytic activity in comparison with the MCD. The results obtained from CIP removal and mineralization assays performed in sulfate medium also showed that the NCD was more efficient than the MCD under all the current densities investigated. The effects of CIP concentration and the evolution of the final by-products, including short-chain carboxylic acids and inorganic ions, were also investigated. The electrochemical performance of the NCD was evaluated in different aqueous matrices, including chloride medium, real wastewater and simulated urine. The application of the NCD led to complete or almost complete CIP degradation, regardless of the medium employed. The kinetic constant rates obtained under the different media investigated were as follows: synthetic urine (0.0416 min-1 - R2 = 0.991) < real wastewater (0.0923 min-1 R2 = 0.997) < synthetic matrix containing chloride (0.1992 min-1 - R2 = 0.995); this shows that the pollutant degradation was affected by the type of aqueous matrix and the oxidants that were electrogenerated in situ. The results obtained from the analysis of electrical energy per order (EE/O) showed that the treatment of simulated urine spkiked with required the highest energy consumption, followed by the real effluent and synthetic matrix containing chloride. The present study proves the viability of electrocatalytic nanostructured materials to the treatment of antibiotics in complex matrices.
Collapse
Affiliation(s)
- Alexsandro J Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13566-590, Brazil.
| | - Guilherme V Fortunato
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13566-590, Brazil.
| | - Matheus S Kronka
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Laís G Vernasqui
- National Institute for Space Research - INPE, Av. dos Astronautas, 1758, Jd. Granja, São José dos Campos, SP, 12227-010, Brazil
| | - Neidenêi G Ferreira
- National Institute for Space Research - INPE, Av. dos Astronautas, 1758, Jd. Granja, São José dos Campos, SP, 12227-010, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP, 13566-590, Brazil.
| |
Collapse
|
5
|
Wang T, Huang T, Jiang H, Ma R. Electrochemical degradation of atrazine by BDD anode: Evidence from compound-specific stable isotope analysis and DFT simulations. CHEMOSPHERE 2021; 273:129754. [PMID: 33524760 DOI: 10.1016/j.chemosphere.2021.129754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Direct charge transfer (DCT) and •OH attack played important roles in contaminant degradation by BDD electrochemical oxidation. Their separate contributions and potential bond-cleavage processes were required but lacking. Here, we carried out promising compound-specific isotope fractionation analysis (CSIA) to explore 13C and 2H isotope fractionation of atrazine (ATZ), followed by assessing the reaction pathway by BDD anode. The correlation of 2H and 13C fractionation allows to remarkably differentiate DCT process and •OH attack, with Λ values of 18.99 and 53.60, respectively. Radical quenching identified that •OH accounted for 79.0%-88.5% in the whole reaction. While CSIA methods provided biased results, which suggested that ATZ degradation exhibited two stages with •OH contributions of 24.6% and 84.3% respectively, confirming CSIA was more sensitive and provided more possibilities to estimate degradation processes. Combined with Fukui index and intermediate products identification, we deduced that dechlorination-hydroxylation mainly occurred in the first 30 min by DCT reaction. While lateral chain oxidation with C-N broken was the governing route once •OH was largely generated, with the production of DEA (m/z 188), DIA (m/z 174), DEIA (m/z 146) and DEIHA (m/z 128). Our results demonstrated that isotope fractionation can offer "isotopic footprints" for identifying the rate-limiting steps and bond breakage process, and opens new avenues for degradation pathways of contaminants.
Collapse
Affiliation(s)
- Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
6
|
Treatment of Tebuthiuron in synthetic and real wastewater using electrochemical flow-by reactor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|