1
|
Tasleem M, Singh V, Tiwari A, Ganesan V, Sankar M. Electrocatalysis Using Cobalt Porphyrin Covalently Linked with Multi-Walled Carbon Nanotubes: Hydrazine Sensing and Hydrazine-Assisted Green Hydrogen Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401273. [PMID: 38958069 DOI: 10.1002/smll.202401273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).
Collapse
Affiliation(s)
- Mohammad Tasleem
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ananya Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Muniappan Sankar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Wang W, Zhang J, Rong J, Chen L, Cui S. Quantum-sized CoP nanodots with rich vacancies: Enhanced hydrazine oxidation, hydrazine-assisted water splitting, and Zn-hydrazine battery performance through interface modulation. J Colloid Interface Sci 2024; 680:214-223. [PMID: 39561647 DOI: 10.1016/j.jcis.2024.11.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Reducing the size of catalysts and tuning their electronic structure and interfacial properties are key to enhancing catalytic performance. Herein, a series of quantum-sized Co-based nanodot composites, including Co3O4/C, CoS2/C, CoN/C, and CoP/C, were synthesized using chemical vapor deposition (CVD) methods. By means of experimental measurement and theoretical calculation, CoP/C exhibited more robust electrochemical response than other Co-based compounds in electrochemical oxidation of N2H4 (HzOR) and hydrogen evolution reaction (HER). The catalytic activities of CoP/C can be further enhanced by introducing Co vacancies on the surface of CoP/C (labeled as Co1-xP/C). The results demonstrated that Co1-xP/C not only exhibited notable electrochemical responses at an ultra-low N2H4 concentration of 0.67 μM, showcasing its potential for ultra-sensitive N2H4 detection but also realized HzOR instead of the oxygen evolution reaction (OER) half-reaction, thereby lowering the overpotential to 2.0 mV at 10.0 mA cm-2. Finally, a Zn-hydrazine (Zn-Hz) battery was fabricated as a promising energy conversion device, showing the exceptional practical value of Co1-xP/C.
Collapse
Affiliation(s)
- Wenxin Wang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiangjiang Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Jinsheng Rong
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China.
| | - Shiqiang Cui
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Lam SM, Wong SM, Sin JC, Zeng H, Li H, Huang L, Lin H, Mohamed AR, Lim JW, Qin Z. Bi-functional NiFe 2O 4/SrTiO 3 S-scheme heterojunction for eminent performance photocatalytic treatment of sewage effluent and electrochemical hydrazine determination. ENVIRONMENTAL RESEARCH 2024; 261:119718. [PMID: 39096993 DOI: 10.1016/j.envres.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Devising of materials that afforded dual applicability in decontamination and pollutant detection were still a towering challenge owing to the increasing flux of discharge toxic contaminants over the years. Herein, the NiFe2O4 nanoparticles-loaded on cube-like SrTiO3 (NiFe2O4/SrTiO3) composite was fabricated by a two-step hydrothermal approach providing remarkable photocatalytic treatment and electrochemical sensing of noxious pollutants in wastewater. The material traits of the fabricated composite were scrutinized by myriad characterization approaches. The NiFe2O4/SrTiO3 hybrid material demonstrated high surface area of 19.81 m2/g, adequate band gap energy of 2.75 eV, and prominent photoluminescence characteristics. In the presence of visible light, the NiFe2O4/SrTiO3 exhibited profound photocatalysis capability to eliminate sewage effluent-bearing chlortetracycline hydrochloride (CTCH) with 88.6% COD removal in 120 min, outperforming other pure materials. Meanwhile, the toxicity examination of effluent, the possible degradation pathway of CTCH and the proposed photocatalysis mechanism were also divulged. More importantly, the glassy carbon electrode was modified with synergized NiFe2O4/SrTiO3 (NiFe2O4/SrTiO3-GCE) was adopted for the precise quantification of Hydrazine (Hz). The NiFe2O4/SrTiO3-GCE obeyed first-order response for the Hz detection within the range of 1-10 mM: cyclic voltametric: limit of detection (LOD) of 0.119 μM with sensitivity of 18.9 μA μM-1 cm-2, and linear sweep voltametric: LOD of 0.222 μM with a sensitivity of 12.05 μA μM-1 cm-2. The stability and interference of modified electrode were also inspected. This work furnished valuable insights to yield a composite with the prominent S-scheme heterojunction system for quenching of charge carrier recombination and consequently contributing to the future realization into the domains of environmental clean-up and toxic chemical detection.
Collapse
Affiliation(s)
- Sze-Mun Lam
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Sin-May Wong
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Jin-Chung Sin
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
H G, S V, Y S N, Devendrappa H. A CTAB-assisted PANI-MoS 2 nanosheet flower morphology for the highly sensitive electrochemical detection of hydrazine. RSC Adv 2023; 13:34891-34903. [PMID: 38035240 PMCID: PMC10687520 DOI: 10.1039/d3ra06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
In this work, cetyl trimethylammonium bromide (CTAB)-assisted polyaniline-molybdenum disulfide (CPANI-MoS2) nanosheets with a flower morphology have been synthesized through in situ polymerization and a hydrothermal method. The composite was analyzed for structural modification through X-ray diffraction (XRD) to examine chemical changes and the presence of functional groups via Fourier transform infrared (FTIR) and Raman spectroscopy techniques. The surface morphology was identified by field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) techniques. The CPANI-MoS2 nanosheet glassy carbon electrode (GCE) offers a novel strategy for the electrochemical detection of carcinogenic hydrazine. The cyclic voltammetry (CV) curve demonstrated a quasi-reversible behaviour with a high-surface area. Furthermore, differential pulse voltammetry (DPV) analysis of hydrazine detection showed a wide linear range from 10 μM to 100 μM, a low limit of detection of 0.40 μM, and a high sensitivity of 7.23 μA μM cm-2. The determination of hydrazine in a water sample and the recovery percentage were found to be 100.31% and 103.73%, respectively. The CPANI-MoS2 nanosheet GCE significantly contributed to the high electroanalytical oxidation activity due to the CTAB surfactant modifying the flower-like nanosheet morphology, which enables the easy adsorption of hydrazine analyte species and exhibits a high current rate with a rapid detection response.
Collapse
Affiliation(s)
- Ganesha H
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - Veeresh S
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - Nagaraju Y S
- Department of Physics Mangalore University Mangalagangothri-574199 India
| | - H Devendrappa
- Department of Physics Mangalore University Mangalagangothri-574199 India
| |
Collapse
|
5
|
Suwannaruang T, Pratyanuwat A, Sinthujariwat P, Wantala K, Chirawatkul P, Junlek N, Nijpanich S, Shahmoradi B, Shivaraju HP. Dynamically driven perovskite La-Fe-modified SrTiO 3 nanocubes and their improved photoresponsive activity under visible light: influence of alkaline environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90298-90317. [PMID: 36357757 DOI: 10.1007/s11356-022-23977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Visible-light active La-Fe-SrTiO3 (La0.01Sr0.99Fe0.01Ti0.99O3) photocatalysts were synthesized via a dynamic hydrothermal route under different NaOH concentrations (2, 3, 4, 5, and 6 M). The results showed that altering NaOH concentrations changed the physicochemical characteristics of the materials. Namely, the decrease in particle size was observed when the NaOH levels were increased. The specific surface area of the photocatalysts changed with an increased concentration of NaOH, and the maximum value was 17.10 m2/g in 5 M of NaOH. The crystal structure of all prepared samples remained unaffected when altered the NaOH concentration or when incorporated La and Fe in the lattice of SrTiO3. Namely, all samples synthesized under various NaOH concentrations crystallized and maintained in the standard cubic perovskite structure of SrTiO3. The increased NaOH concentration slightly altered the absorption wavelength towards a longer wavelength region. The La atom, replacing some Sr2+ in the structure of modified SrTiO3, was confirmed to be in the La3+ valence state. Simultaneously, Fe atoms demonstrating oxidation states of Fe3+ can also be incorporated into the SrTiO3 network. The photocatalytic degradation of ciprofloxacin antibiotic revealed that the highest performance was approximately 75% within 9 h over the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared at 5 M of NaOH via the dynamic hydrothermal process. Meanwhile, this photocatalyst also displayed greater activity than the pristine SrTiO3, the single-doped samples (SrFe0.01Ti0.99O3 and La0.01Sr0.99TiO3), and the La0.01Sr0.99Fe0.01Ti0.99O3 sample prepared through a static hydrothermal technique under the same synthesis condition.
Collapse
Affiliation(s)
- Totsaporn Suwannaruang
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Acapol Pratyanuwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Putichot Sinthujariwat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prae Chirawatkul
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Narong Junlek
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | |
Collapse
|
6
|
Wang S, Yin H, Qu K, Wang L, Gong J, Zhao S, Wu S. Electrochemical sensors based on platinum-coated MOF-derived nickel-/N-doped carbon nanotubes (Pt/Ni/NCNTs) for sensitive nitrite detection. ANAL SCI 2023:10.1007/s44211-023-00336-2. [PMID: 37040003 DOI: 10.1007/s44211-023-00336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
As excess nitrite has a serious threat to the human health and environment, constructing novel electrochemical sensors for sensitive nitrite detection is of great importance. In this report, platinum nanoparticles were deposited on nickel-/N-doped carbon nanotubes, which were obtained through a self-catalytically grown process with Ni-MOF as precursors. The as-prepared Pt/Ni/NCNTs were applied as amperometric sensors and presented superior sensing properties for nitrite detection. Benefiting from the synergy of Pt and Ni/NCNTs, Pt/Ni/NCNTs displayed much wider detection ranges (0.5-40 mM and 40-110 mM) for nitrite sensing. The sensitivity is 276.92 μA mM-1 cm-2 and 224.39 μA mM-1 cm-2, respectively. The detection limit is 0.17 μM. The Pt/Ni/NCNTs sensors also showed good feasibility for nitrite sensing in real samples (milk and peach juice) analysis. The active Pt/Ni/NCNTs composites and facile fabrication technique may provide useful strategies to develop other sensitive nitrite sensors.
Collapse
Affiliation(s)
- Shuyue Wang
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Haoyong Yin
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China.
| | - Kaige Qu
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Ling Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianying Gong
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Shumin Zhao
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Shengji Wu
- College of Engineering, Huzhou University, Huzhou, 313000, China.
| |
Collapse
|
7
|
Sensitive and Selective Electrochemical Sensor for Detecting 4-Nitrophenole using Novel Gold Nanoparticles/Reduced Graphene Oxide/Activated Carbon Nanocomposite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Rashed MA, Ahmed J, Faisal M, Alsareii S, Jalalah M, Harraz FA. Highly sensitive and selective thiourea electrochemical sensor based on novel silver nanoparticles/chitosan nanocomposite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Rashed M, Faisal M, Ahmed J, Alsareii S, Jalalah M, Harraz FA. Highly sensitive and selective amperometric hydrazine sensor based on Au nanoparticle-decorated conducting polythiophene prepared via oxidative polymerization and photo-reduction techniques. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Nde DT, Jhung SH, Lee HJ. Electrocatalytic Determination of Hydrazine Concentrations with Polyelectrolyte Supported AuCo Nanoparticles on Carbon Electrodes. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
MWCNT-Doped Polypyrrole-Carbon Black Modified Glassy Carbon Electrode for Efficient Electrochemical Sensing of Nitrite Ions. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00675-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|