1
|
Kogularasu S, Lee YY, Sriram B, Wang SF, George M, Chang-Chien GP, Sheu JK. Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202311806. [PMID: 37773568 DOI: 10.1002/anie.202311806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.
Collapse
Affiliation(s)
- Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Yen-Yi Lee
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan)
| |
Collapse
|
2
|
Kuruppathparambil RR, Robert TM, Pillai RS, Pillai SKB, Kalamblayil Shankaranarayanan SK, Kim D, Mathew D. Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Hou Y, Jiang CJ, Wang Y, Zhu JW, Lu JX, Wang H. Nitrogen-doped mesoporous carbon supported CuSb for electroreduction of CO 2. RSC Adv 2022; 12:12997-13002. [PMID: 35497016 PMCID: PMC9052304 DOI: 10.1039/d2ra01893d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
The construction of an efficient catalyst for electrocatalytic reduction of CO2 to high value-added fuels has received extensive attention. Herein, nitrogen-doped mesoporous carbon (NMC) was used to support CuSb to prepare a series of materials for electrocatalytic reduction of CO2 to CH4. The catalytic activity of the composites was significantly improved compared with that of Cu/NMC. In addition, the Cu content also influenced the activity of electrocatalytic CO2 reduction reaction. Among the materials used, the CuSb/NMC-2 (Cu: 5.9 wt%, Sb: 0.49 wt%) catalyst exhibited the best performance for electrocatalytic CO2 reduction, and the faradaic efficiency of CH4 reached 35%, and the total faradaic efficiency of C1–C2 products reached 67%. CuSb anchored onto nitrogen-doped mesoporous carbon (CuSb/NMC) were prepared for electroreduction of CO2 to CH4, C2H4 and CO.![]()
Collapse
Affiliation(s)
- Yue Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cheng-Jie Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ying Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jing-Wei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jia-Xing Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| | - Huan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|