1
|
Mohanapriya D, Thenmozhi K. In situ developed NiCo 2O 4-Ti 3C 2T x nanohybrid towards non-enzymatic electrochemical detection of glucose and hydrogen peroxide. J Mater Chem B 2025; 13:2306-2316. [PMID: 39714234 DOI: 10.1039/d4tb02265c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Owing to the adverse consequences of excess glucose (Glu) and hydrogen peroxide (H2O2) on humans, it is imperative to develop an electrochemical sensor for detection of these analytes with good selectivity and sensitivity. Herein, a nanohybrid comprising nickel cobaltite nanoparticles (NiCo2O4 NPs) embedded on conductive Ti3C2Tx nanosheets (NSs) has been prudently designed and employed for the electrochemical detection of Glu and H2O2. The developed nanohybrid has been systematically characterized using morphological and spectral techniques, and then immobilized on a glassy carbon electrode (GCE). Under optimized conditions, the developed NiCo2O4-Ti3C2Tx/GCE based electrochemical sensor has demonstrated an impressive analytical response towards Glu and H2O2 with good sensitivity and selectivity. The non-enzymatic sensor has demonstrated a broad linear range from 30 μM to 1.83 mM for Glu, and two linear ranges of 20-100 μM and 100 μM-2.01 mM for H2O2. The sensor has exhibited limits of detection (LOD) of 9 μM and 6 μM with sensitivities of 101.2 μA μM-1 cm-2 and 107.03 μA μM-1 cm-2, respectively, for Glu and H2O2 detection. The impressive analytical performance of the fabricated sensor in terms of linear range, LOD and sensitivity are ascribed to the (i) enhanced conductivity of Ti3C2Tx NSs, (ii) mediated electrocatalytic activity of NiCo2O4 NPs and (iii) large number of catalytically active sites on the NiCo2O4-Ti3C2Tx heterostructure. Notably, the NiCo2O4-Ti3C2Tx/GCE has demonstrated impressive stability and reproducibility, which is mainly due to the in situ uniform growth of NiCo2O4 NPs over Ti3C2Tx NSs.
Collapse
Affiliation(s)
- Devarasu Mohanapriya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore-632014, India.
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore-632014, India.
| |
Collapse
|
2
|
Sobahi N, Imran M, Khan ME, Mohammad A, Alam MM, Yoon T, Mehedi IM, Hussain MA, Abdulaal MJ, Jiman AA. Electrochemical Sensing of H 2O 2 by Employing a Flexible Fe 3O 4/Graphene/Carbon Cloth as Working Electrode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2770. [PMID: 37049064 PMCID: PMC10096334 DOI: 10.3390/ma16072770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
We report the synthesis of Fe3O4/graphene (Fe3O4/Gr) nanocomposite for highly selective and highly sensitive peroxide sensor application. The nanocomposites were produced by a modified co-precipitation method. Further, structural, chemical, and morphological characterization of the Fe3O4/Gr was investigated by standard characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and high-resolution TEM (HRTEM), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The average crystal size of Fe3O4 nanoparticles was calculated as 14.5 nm. Moreover, nanocomposite (Fe3O4/Gr) was employed to fabricate the flexible electrode using polymeric carbon fiber cloth or carbon cloth (pCFC or CC) as support. The electrochemical performance of as-fabricated Fe3O4/Gr/CC was evaluated toward H2O2 with excellent electrocatalytic activity. It was found that Fe3O4/Gr/CC-based electrodes show a good linear range, high sensitivity, and a low detection limit for H2O2 detection. The linear range for the optimized sensor was found to be in the range of 10-110 μM and limit of detection was calculated as 4.79 μM with a sensitivity of 0.037 µA μM-1 cm-2. The cost-effective materials used in this work as compared to noble metals provide satisfactory results. As well as showing high stability, the proposed biosensor is also highly reproducible.
Collapse
Affiliation(s)
- Nebras Sobahi
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan 45142, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Md. Mottahir Alam
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Ibrahim M. Mehedi
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
- Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad A. Hussain
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
| | - Mohammed J. Abdulaal
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
| | - Ahmad A. Jiman
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.)
| |
Collapse
|
3
|
Qi C, Zhang C, Yang Z. Engineering Co3O4 with Co defects for highly sensitive nonenzymatic detection of glucose. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Synthesis of CuGa2O4/MoS2 nanocomposite and its electrogenerated chemiluminescent sensing application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Lete C, Spinciu AM, Alexandru MG, Calderon Moreno J, Leau SA, Marin M, Visinescu D. Copper(II) Oxide Nanoparticles Embedded within a PEDOT Matrix for Hydrogen Peroxide Electrochemical Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22218252. [PMID: 36365951 PMCID: PMC9658751 DOI: 10.3390/s22218252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 05/19/2023]
Abstract
The aim of this study is the preparation of nanostructured copper(II) oxide-based materials (CuONPs) through a facile additive-free polyol procedure that consists of the hydrolysis of copper(II) acetate in 1,4-butane diol and its application in hydrogen peroxide sensing. The nonenzymatic electrochemical sensor for hydrogen peroxide determination was constructed by drop casting the CuONP sensing material on top of a glassy carbon electrode (GCE) modified by a layer of poly(3,4-ethylenedioxythiophene) conducting polymer (PEDOT). The PEDOT layer was prepared on GCE using the sinusoidal voltage method. The XRD pattern of the CuONPs reveals the formation of the monoclinic tenorite phase, CuO, with average crystallite sizes of 8.7 nm, while the estimated band gap from UV-vis spectroscopy is of 1.2 eV. The SEM, STEM, and BET analyses show the formation of quasi-prismatic microaggregates of nanoparticles, with dimensions ranging from 1 µm up to ca. 200 µm, with a mesoporous structure. The developed electrochemical sensor exhibited a linear response toward H2O2 in the concentration range from 0.04 to 10 mM, with a low detection limit of 8.5 μM of H2O2. Furthermore, the obtained sensor possessed an excellent anti-interference capability in H2O2 determination in the presence of interfering compounds such as KNO3 and KNO2.
Collapse
Affiliation(s)
- Cecilia Lete
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (C.L.); (D.V.)
| | - Adela-Maria Spinciu
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Jose Calderon Moreno
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Sorina-Alexandra Leau
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Polizu Gh. Street, 011061 Bucharest, Romania
| | - Mariana Marin
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
| | - Diana Visinescu
- Institute of Physical Chemistry «Ilie Murgulescu» of the Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (C.L.); (D.V.)
| |
Collapse
|
6
|
Wan T, Li K, Kong X, Shen Q, Sun F, Wu H. A new Ag(I) inorganic polymer consisting of Ag(I)-Ag(I) bonds for electrochemical sensing of H 2O 2. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Tiantian Wan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Qinqin Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Fugang Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
7
|
Ahmad K, Kim H. Fabrication of Nitrogen-Doped Reduced Graphene Oxide Modified Screen Printed Carbon Electrode (N-rGO/SPCE) as Hydrogen Peroxide Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2443. [PMID: 35889667 PMCID: PMC9324769 DOI: 10.3390/nano12142443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
In recent years, the electrochemical sensing approach has attracted electrochemists because of its excellent detection process, simplicity, high sensitivity, cost-effectiveness, and high selectivity. In this study, we prepared nitrogen doped reduced graphene oxide (N-rGO) and characterized it using various advanced techniques such as XRD, SEM, EDX, Raman, and XPS. Furthermore, we modified the active surface of a screen printed carbon electrode (SPCE) via the drop-casting of N-rGO. This modified electrode (N-rGO/SPCE) exhibited an excellent detection limit (LOD) of 0.83 µM with a decent sensitivity of 4.34 µAµM-1cm-2 for the detection of hydrogen peroxide (H2O2). In addition, N-rGO/SPCE also showed excellent selectivity, repeatability, and stability for the sensing of H2O2. Real sample investigations were also carried out that showed decent recovery.
Collapse
Affiliation(s)
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
8
|
Zhang N, Song Z, Sun H, Shi Z, Li C, Guo C. Imidazole-induced manganese oxide nanocrystals on carbon nanofiber hybridized with gold nanoparticles as bifunctional biomimetic enzyme in live-cell assays. J Colloid Interface Sci 2022; 614:288-297. [DOI: 10.1016/j.jcis.2022.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
9
|
Sun F, Dong J, Li R, Jiang Y, Wan T, Wu H. Two binuclear silver(I) complexes containing V‐shaped bis (benzimidazole) ligands: Syntheses, structures and electrochemical sensing towards hydrogen peroxide. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fugang Sun
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou Gansu People’s Republic of China
| |
Collapse
|
10
|
Khan RK, Silva TA, Fatibello‐Filho O, Collinson MM, Farghaly AA. Nanoporous Pt(Au) Alloys for the Enhanced, Non‐enzymatic Detection of Hydrogen Peroxide under Biofouling Conditions. ELECTROANAL 2022. [DOI: 10.1002/elan.202100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezaul K. Khan
- Department of Chemistry Virginia Commonwealth University 23284-2006 Richmond Virginia United States
| | - Tiago A. Silva
- Department of Chemistry Federal University of São Carlos CEP: 13560-970 São Carlos SP Brazil
- Department of Chemistry Federal University of Viçosa CEP: 36570-900 Viçosa MG Brazil
| | - Orlando Fatibello‐Filho
- Department of Chemistry Federal University of São Carlos CEP: 13560-970 São Carlos SP Brazil
| | - Maryanne M. Collinson
- Department of Chemistry Virginia Commonwealth University 23284-2006 Richmond Virginia United States
| | - Ahmed A. Farghaly
- Chemical Sciences and Engineering Division Argonne National Laboratory 60439-4801 Lemont Illinois United States
- Chemistry Department, Faculty of Science Assiut University 71516 Assiut Egypt
| |
Collapse
|
11
|
Sun F, Dong J, Jiang Y, Li R, Wu H. Bis(benzimidazole) dinuclear silver(I) complex modified carbon paste electrode for electrochemical sensing of hydrogen peroxide. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2002307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fugang Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Ruixue Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
12
|
Annealing Studies of Copper Indium Oxide (Cu2In2O5) Thin Films Prepared by RF Magnetron Sputtering. COATINGS 2021. [DOI: 10.3390/coatings11111290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper indium oxide (Cu2In2O5) thin films were deposited by the RF magnetron sputtering technique using a Cu2O:In2O3 target. The films were deposited on glass and quartz substrates at room temperature. The films were subsequently annealed at temperatures ranging from 100 to 900 °C in an O2 atmosphere. The X-ray diffraction (XRD) analysis performed on the samples identified the presence of Cu2In2O5 phases along with CuInO2 or In2O3 for the films annealed above 500 °C. An increase in grain size was identified with the increase in annealing temperatures from the XRD analysis. The grain sizes were calculated to vary between 10 and 27 nm in films annealed between 500 and 900 °C. A morphological study performed using SEM further confirmed the crystallization and the grain growth with increasing annealing temperatures. All films displayed high optical transmission of more than 70% in the wavelength region of 500–800 nm. Optical studies carried out on the films indicated a small bandgap change in the range of 3.4–3.6 eV during annealing.
Collapse
|
13
|
Abstract
Thin films of CuGa2O4 were deposited using an RF magnetron-sputtering technique for the first time. The sputtered CuGa2O4 thin films were post-deposition annealed at temperatures varying from 100 to 900 °C in a constant O2 ambience for 1.5 h. Structural and morphological studies were performed on the films using X-ray diffraction analysis (XRD) and a Field Emission Scanning Electron Microscope (FESEM). The presence of CuGa2O4 phases along with the CuO phases was confirmed from the XRD analysis. The minimum critical temperature required to promote the crystal growth in the films was identified to be 500 °C using XRD analysis. The FESEM images showed an increase in the grain size with an increase in the annealing temperature. The resistivity values of the films were calculated to range between 6.47 × 103 and 2.5 × 108 Ωcm. Optical studies were performed on all of the films using a UV-Vis spectrophotometer. The optical transmission in the 200–800 nm wavelength region was noted to decrease with an increase in the annealing temperature. The optical bandgap value was recorded to range between 3.59 and 4.5 eV and showed an increasing trend with an increase in the annealing temperature.
Collapse
|