1
|
Li H, Sun X, Liu D, Liu X, Du X, Li S, Xing X, Cheng X, Bi D, Qiu D. Facile Synthesis of Novel Conducting Copolymers Based on N-Furfuryl Pyrrole and 3,4-Ethylenedioxythiophene with Enhanced Optoelectrochemical Performances Towards Electrochromic Application. Molecules 2024; 30:42. [PMID: 39795099 PMCID: PMC11721796 DOI: 10.3390/molecules30010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
In this article, a series of novel conducting copolymers P(FuPy-co-EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy-co-EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.75~1.86 eV). Spectroelectrochemistry studies indicate that the resulting copolymers with increased EDOT units show strengthened electrochromic characteristics, exhibiting a red-to-green-to-blue multicolor reversible transition, especially for the P(FuPy1-co-EDOT9) copolymer films. They also show increased optical contrast (9~34%), fast response time (0.8~2.4 s), and good coloring efficiency (110~362 cm2 C-1). Additionally, the complementary bilayer P(FuPy-co-EDOT)/PEDOT electrochromic devices (ECDs) are also assembled and evaluated to hold excellent electrochromic switching performances with relatively high optical contrast (25%), rapid response time (0.9 s), and satisfactory coloring efficiency (416 cm2 C-1). Together with the superior open circuit memory and cycling stability, they can be used as a new type of electrochromic material and have considerable prospects as promising candidates for electrochromic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | | | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
3
|
Kalinin V, Padnya P, Stoikov I. Romanowsky staining: history, recent advances and future prospects from a chemistry perspective. Biotech Histochem 2024; 99:1-20. [PMID: 37929609 DOI: 10.1080/10520295.2023.2273860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Romanowsky staining was an important methodological breakthrough in diagnostic hematology and cytopathology during the late 19th and early 20th centuries; it has facilitated for decades the work of biologists, hematologists and pathologists working with blood cells. Despite more than a century of studying Romanowsky staining, no systematic review has been published that explains the chemical processes that produce the "Romanowsky effect" or "Romanowsky-Giemsa effect" (RGE), i.e., a purple coloration arising from the interaction of an azure dye with eosin and not due merely to their simultaneous presence. Our review is an attempt to build a bridge between chemists and biomedical scientists and to summarize the available data on methylene blue (MB) demethylation as well as the related reduction and decomposition of MB to simpler compounds by both light and enzyme systems and microorganisms. To do this, we analyze modern data on the mechanisms of MB demethylation both in the presence of acids and bases and by disproportionation due to the action of light. We also offer an explanation for why the RGE occurs only when azure B, or to a lesser extent, azure A is present by applying experimental and calculated physicochemical parameters including dye-DNA binding constants and electron density distributions in the molecules of these ligands. Finally, we discuss modern techniques for obtaining new varieties of Romanowsky dyes by modifying previously known ones. We hope that our critical literature study will help scientists understand better the chemical and physicochemical processes and mechanisms of cell staining with such dyes.
Collapse
Affiliation(s)
- Valeriy Kalinin
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
4
|
Ma D, Yang B, Wang J. Boosting the Self-Recharging of Polypyrrole/Prussian Blue Electrochromic Device by Potential Difference-Driven Alternative Redox. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56041-56048. [PMID: 38012055 DOI: 10.1021/acsami.3c14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Energy-storage electrochromic (EC) devices are a kind of recently developed device integrating energy-saving and energy-storage functions. To minimize energy consumption, a self-rechargeable energy-storage EC device with fast recovery speed is highly desired. Herein, a polypyrrole (PPy)/Prussian blue (PB) double-layer film with a potential difference is initially constructed and fabricated into a fast-recovery self-rechargeable EC device. Due to the existence of potential difference, the reduced PPy can be oxidized by PB, and subsequently Prussian white (the reduced state of PB) can be oxidized by O2 dissolved in electrolyte. Thus, the self-coloration/self-recharging process can be boosted by an alternative redox occurring in the solid/solid/liquid interfaces of PPy/PB/dissolved O2 instead of common solid/liquid interfaces or solutions. After self-recharging for 1 h, 65.0% of the open-circuit voltage and 45.2% of the total capacity can be recovered. Simultaneously, the synergy effect in this PPy and PB system enables a large optical modulation of 63.3% at 800 nm, a high open-circuit voltage of 1.20 V, and a large initial specific capacity of 87.8 mA·h·g-1 at 1.0 A·g-1. The design of double-layer film with a potential difference for boosting the self-coloration/self-recharging process of EC devices provides a new strategy for next-generation self-powered energy-storage EC devices.
Collapse
Affiliation(s)
- Dongyun Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bing Yang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinmin Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Golba S, Loskot J. The Alphabet of Nanostructured Polypyrrole. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7069. [PMID: 38004999 PMCID: PMC10672593 DOI: 10.3390/ma16227069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
6
|
El Fazdoune M, Bahend K, Ben Jadi S, Oubella M, García-García FJ, Bazzaoui EA, Asserghine A, Bazzaoui M. Different electrochemical techniques for the electrosynthesis of poly methylene blue in sodium saccharin aqueous medium. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Hu B, Li J, Wang Y, Hu X, Shi Y, Jin L. Design, electrosynthesis and electrochromic properties of conjugated microporous polymer films based on butterfly-shaped diphenylamine-thiophene derivatives. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Simple electrochromic sensor for the determination of amines based on the proton sensitivity of polyaniline film. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu R, Ren Y, Wang Y, Zhang C, Wang J, Zhang Y, Wang Y, Yun K, Zhao G. Fabrication of TiO2: Nb array films and their enhanced electrochromic performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Ratautaite V, Brazys E, Ramanaviciene A, Ramanavicius A. Electrochemical Sensors based on L-Tryptophan Molecularly Imprinted Polypyrrole and Polyaniline. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Ratautaite V, Boguzaite R, Mickeviciute MB, Mikoliunaite L, Samukaite-Bubniene U, Ramanavicius A, Ramanaviciene A. Evaluation of Electrochromic Properties of Polypyrrole/Poly(Methylene Blue) Layer Doped by Polysaccharides. SENSORS 2021; 22:s22010232. [PMID: 35009774 PMCID: PMC8749664 DOI: 10.3390/s22010232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer. AFM and SEM have been used for the analysis of the surface dominant features of the Ppy-PMB layers. From these images, it was concluded that the saccharides used in this study have a moderate effect on the surface morphology. Electrochromic properties were analyzed with respect to the changes of absorbance of the layer at two wavelengths (668 nm and 750 nm) by changing the pH of the surrounding solution and the potential between +0.8 V and -0.8 V. It was demonstrated that the highest absorbance changes are characteristic for all layers in the acidic media. Meanwhile, the absorbance changes of the layers were decreased in the more alkaline media. It was determined that the Ppy-PMB layers with heparin as a dopant were more mechanically stable in comparison to the layers doped with lactose and sucrose. Therefore, the Ppy-PMB layer doped with heparin was selected for the further experiment and it was applied in the design of electrochromic sensors for the determination of three xanthine derivatives: caffeine, theobromine, and theophylline. A linear relationship of ΔA (∆A = A+0.8V - A-0.8V) vs. concentration was determined for all three xanthine derivatives studied. The largest change in optical absorption was observed in the case of theophylline determination.
Collapse
Affiliation(s)
- Vilma Ratautaite
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Raimonda Boguzaite
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Migle Beatrice Mickeviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
- Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
| | - Arunas Ramanavicius
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (R.B.); (U.S.-B.); (A.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (M.B.M.); (L.M.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
12
|
Ermiş N. Preparation of an easy and low-cost electrochemical sensor for cysteine detection based on over-oxidized poly (thiophene) modified gold electrode. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhou X, Guo L, Wang Q, Wang J, Wang X, Yang J, Tang J. Nitrogen-doped porous graphitized carbon from antibiotic bacteria residues induced by sodium carbonate and application in Li-ion battery. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|