1
|
Wang J, Zhang L, Wang Y, Niu Y, Fang D, Su Q, Wang C. Facet and d-band center engineering of CuNi nanocrystals for efficient nitrate electroreduction to ammonia. Dalton Trans 2022; 51:15111-15120. [PMID: 36125094 DOI: 10.1039/d2dt02256g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic nitrate reduction offers a sustainable route to ammonia synthesis and wastewater treatment. However, the nitrate-to-ammonia conversion remains inefficient due to the sluggish kinetics and diverse side reactions. Herein, well-faceted CuNi nanocrystals with Ni-rich surfaces and favorable d-band centres were synthesized with the assistance of γ-cyclodextrin via a solvothermal process. When used as catalysts for nitrate electroreduction, they delivered an ammonia yield of 1.374 mmol h-1 mg-1 (0.5496 mmol h-1 cm-2) at -0.3 V with the faradaic efficiency and selectivity reaching 94.5% and 65.0%, respectively, surpassing pure Cu or Ni nanocrystals and most reported catalysts. Such excellent performances originated from the optimal geometric and electronic structures and special element distribution, which optimized the adsorption behaviors and accelerated the reaction kinetics. A NO3--NO2--NH3 pathway was proposed with the chemical process following the initial electron transfer process as the rate-determining step. This work sheds light on the design of efficient catalysts to achieve carbon neutrality through simultaneous geometric and electronic structure modulation.
Collapse
Affiliation(s)
- Jiao Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| | - Linlin Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Yuanyuan Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| | - Yongjian Niu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| | - Dong Fang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| | - Qingxiao Su
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| | - Cheng Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, People's Republic of China.
| |
Collapse
|