1
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
2
|
Abd-Elsabour M, Abou-Krisha M, Alhamzani AG, Alotaibi AN, Yousef TA. Voltametric Sensor Based on Magnetic Chitosan Acetylindole-Based Nanocomposite for the Determination of Sulfamethazine. ACS OMEGA 2024; 9:17323-17333. [PMID: 38645363 PMCID: PMC11024945 DOI: 10.1021/acsomega.3c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Sulfamethazine (SMZ), a persistent antibiotic, is frequently detected in drinking water and milk. For this reason, our research aimed to develop a novel electrochemical sensor based on a magnetic nanocomposite supported on chitosan modified by 3-acetylindole through the formation of chitosan acetylindole Schiff base (Chs-Aci). The objective was to detect extremely low concentrations of SMZ in milk. The synthesized nanocomposites were characterized by various techniques, including FT-IR, XRD, EDX, SEM, and TEM. To enhance the electrocatalytic efficiency for sensitive SMZ detection in food samples, a magnetic chitosan acetylindole nanocomposite (M-Chs-Aci) was employed as a modifier for a carbon paste electrode (CPE). The electrochemical measurements revealed that the M-Chs-Aci/CPE exhibits good electrocatalytic performance compared to a bare CPE. Moreover, low detection limit, repeatability, and stability were achieved at 0.021 μM, 3.83%, and 94.87%, respectively. Finally, the proposed M-Chs-Aci/CPE proved to be highly effective in detecting SMZ in milk samples. The obtained findings paved the way for the effective usability of M-Chs-Aci/CPE as a sensor for detecting SMZ in real samples, with acceptable recoveries of 95%-98.87%.
Collapse
Affiliation(s)
| | - Mortaga
M. Abou-Krisha
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry
Department, Faculty of Science, South Valley
University, Luxor 85951, Egypt
| | - Abdulrahman G. Alhamzani
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah N. Alotaibi
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tarek A. Yousef
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department
of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Cairo 11435, Egypt
| |
Collapse
|
3
|
Abumelha HM, Sayqal A, Snari RM, Alkhamis KM, Alharbi A, Al-Ahmed ZA, El-Metwaly NM. Novel Deliberately Sensitive and Selective Tetrahydrozoline Voltammetric Sensors Integrated with a Copper Oxide Nanoparticle/Zeolite Platform. ACS OMEGA 2024; 9:13458-13468. [PMID: 38524465 PMCID: PMC10955712 DOI: 10.1021/acsomega.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The present study introduced a novel disposable screen-printed carbon electrodes (SPCEs) modified with copper oxide/zeolite nanostructures for eco-friendly selective differential pulse voltammetric quantification of tetrahydrozoline (THZ) in eyedrop samples and biological fluids. Modification of the electrode matrix with copper oxide nanoparticles/zeolite nanostructures (CuONPs/ZY) with their effective and synergistic electrocatalytic activity enhanced the electrode performance against electrooxidation of THZ at 0.960 V in BR at pH 9.0 with a diffusion-controlled reaction mechanism. The tentative oxidation mechanism based on molecular orbital calculations postulates the oxidation of THZ molecules through oxidation of a nitrogen atom five-membered ring and the participation of two electrons/protons in the electrode reaction. Linear calibration curves were illustrated within a wide THZ concentration range from 0.24 to 57.2 μg mL-1 recording a limit of detection (LOD) value of 0.0799 μg mL-1. The CuONPs/ZY/SPEs exhibited improved performance compared with the sole reported THZ sensor-based gold film-plated carbon paste electrodes, in addition to their high reproducibility of fabrication and measurement and prolonged shelf lifetime. Tetrahydrozoline was successfully assayed in the presence of excipients, degradation products, and chloramphenicol. The presented voltammetric sensor can be considered as an eco-friendly and reliable analytical approach for monitoring THZ residues in eye drop samples and biological fluids with high recovery compared with the official pharmacopeial analytical protocol. The presented sensors were assessed according to an EcoScale tool and also compared with the reported THZ sensor.
Collapse
Affiliation(s)
- Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali Sayqal
- Department
of Chemistry, College of Sciences, Umm Al-Qura
University, Makkah 24230, Saudi Arabia
| | - Razan M. Snari
- Department
of Chemistry, College of Sciences, Umm Al-Qura
University, Makkah 24230, Saudi Arabia
| | - Kholood M. Alkhamis
- Department
of Chemistry, Faculty of Science, University
of Tabouk, Tabouk 71421, Saudi Arabia
| | - Arwa Alharbi
- Department
of Chemistry, College of Sciences, Umm Al-Qura
University, Makkah 24230, Saudi Arabia
| | - Zehbah A. Al-Ahmed
- Applied
College Dhahran Aljanoub, King Khalid University, Abha 61421, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, College of Sciences, Umm Al-Qura
University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 002050, Egypt
| |
Collapse
|
4
|
Abumelha HM, Alorabi AQ, Alessa H, Alamrani NA, Alharbi A, Keshk AA, El-Metwaly NM. Novel Iron Oxide Nanoparticle-Fortified Carbon Paste Electrode for the Sensitive Voltammetric Determination of Atomoxetine. ACS OMEGA 2023; 8:19006-19015. [PMID: 37273581 PMCID: PMC10233827 DOI: 10.1021/acsomega.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Herein, the fabrication and full characterization of a novel atomoxetine (ATX) voltammetric carbon paste electrode (CPE) fortified with iron oxide nanoparticles (FeONPs) is demonstrated. Modification of the carbon paste matrix with the metallic oxide nanostructure provides proper electrocatalytic activity against the oxidation of ATX molecules at the carbon paste surface, resulting in a noticeable improvement in the performance of the sensor. At the recommended pH value, ATX recorded an irreversible anodic peak at 1.17 V, following a diffusion-controlled reaction mechanism. Differential pulse voltammograms exhibited peak heights linearly correlated to the ATX content within a wide concentration range from 45 to 8680 ng mL-1, with the limit of detection reaching 11.55 ng mL-1. The electrooxidation mechanism of the ATX molecule was proposed to be the oxidation of the terminal amino group accompanied by the transfer of two electrons and two protons. The fabricated FeONPs/CPE sensors exhibited enhanced selectivity and sensitivity and therefore can be introduced for voltammetric assaying of atomoxetine-indifferent pharmaceutical and biological samples in the presence of its degradation products and metabolites.
Collapse
Affiliation(s)
- Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Al-Baha
University, P.O. Box 1988, Albaha 65799, Saudi Arabia
| | - Hussain Alessa
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Nasser A. Alamrani
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Arwa Alharbi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Ali A. Keshk
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Al-nami S, Alorabi AQ, Al-Ahmed ZA, Mogharbel AT, Abumelha HM, Hussein MA, El-Metwaly NM. Superficial and Inkjet Scalable Printed Sensors Integrated with Iron Oxide and Reduced Graphene Oxide for Sensitive Voltammetric Determination of Lurasidone. ACS OMEGA 2023; 8:10449-10458. [PMID: 36969426 PMCID: PMC10034779 DOI: 10.1021/acsomega.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrated the fabrication and the electrochemical characterization of novel printed electrochemical sensors integrated with an innovative nanosensing platform based on the synergic electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced graphene oxide (rGO) for precise voltammetric determination of the antipsychotic drug lurasidone hydrochloride (LUH). The features of the electrode surface fabricated using the ordinary inkjet printer were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Among different ink formulations, integration of the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to be the most appropriate for sensitive quantification of LUH in biological fluids and pharmaceutical formulations in the presence of LUH degradation products. Under the optimized experimental and electroanalytical parameters, the recorded square-wave voltammograms were correlated to LUH within the linear concentration ranging from 50 to 2150 ng mL-1 with detection limit and limit of quantification values of 15.64 and 47.39 ng mL-1, respectively. Based on the cyclic voltammograms recorded for LUH at different scan rates, the electrode reaction was assumed to be a diffusion reaction mechanism accompanied by the transfer of two electrons/protons through the oxidation of the five-membered ring nitrogen atom as assumed by the molecular orbital calculations carried out on the LUH molecule. The C max of LUH and the efficiency of the fabricated sensors enabled their clinical application for monitoring LUH in human biological fluids and pharmaceutical formulations in the presence of degradants for diverse quality control applications and green chemistry analysis.
Collapse
Affiliation(s)
- Samar
Y. Al-nami
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Albaha
University, P.O. Box 1988, Albaha 65799, Saudi Arbia
| | - Zehbah A. Al-Ahmed
- Depertment
of Chemistry, College of Sciences and Art, Dhahran Aljounb, King Khalid University, Abha 61421, Saudi
Arabia
| | - Amal T. Mogharbel
- Department
of Chemistry, Faculty of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October
City, Giza 28125, Egypt
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Shantharaja, Nemakal M, Giddaerappa, Gopal Hegde S, Koodlur Sannegowda L. Novel biocompatible amide phthalocyanine for simultaneous electrochemical detection of adenine and guanine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|