1
|
Johnson B, Dodd A, Mayer AR, Hallett M, Slobounov S. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging Behav 2020; 14:110-117. [PMID: 30361946 DOI: 10.1007/s11682-018-9982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accurate identification and classification of patients suffering from mild traumatic brain injury (mTBI) is a significant challenge faced by clinicians and researchers. To examine if there are different pathophysiological responses to concussive injury in different populations, evaluated here comparing collegiate athletes versus age-matched non-athletes. Resting-state fMRI data were acquired in the acute phase of concussion from 30 collegiate athletes and from 30 injury and age matched non-athletes. Resting-state functional connectivity measures revealed group differences with reduced connectivity in the anterior cingulate cortex (p < .05) and posterior cingulate cortex (p < 0.05) hubs of the Default Mode Network in the athletes. Given the known positive effects of exercise on brain functional reserves and neural efficiency concept, we expected less pronounced effect of concussion in athletic population. In contrast, there were significant decreases in functional connectivity in athletes that could be a result of previous repetitive subconcussive impacts and history of concussion.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA
| | - Andrew Dodd
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.,Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Hallett
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA. .,Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Dixon J, Comstock G, Whitfield J, Richards D, Burkholder TW, Leifer N, Mould-Millman NK, Calvello Hynes EJ. Emergency department management of traumatic brain injuries: A resource tiered review. Afr J Emerg Med 2020; 10:159-166. [PMID: 32923328 PMCID: PMC7474234 DOI: 10.1016/j.afjem.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 11/12/2022] Open
Abstract
Introduction Traumatic brain injury is a leading cause of death and disability globally with an estimated African incidence of approximately 8 million cases annually. A person suffering from a TBI is often aged 20–30, contributing to sustained disability and large negative economic impacts of TBI. Effective emergency care has the potential to decrease morbidity from this multisystem trauma. Objectives Identify and summarize key recommendations for emergency care of patients with traumatic brain injuries using a resource tiered framework. Methods A literature review was conducted on clinical care of brain-injured patients in resource-limited settings, with a focus on the first 48 h of injury. Using the AfJEM resource tiered review and PRISMA guidelines, articles were identified and used to describe best practice care and management of the brain-injured patient in resource-limited settings. Key recommendations Optimal management of the brain-injured patient begins with early and appropriate triage. A complete history and physical can identify high-risk patients who present with mild or moderate TBI. Clinical decision rules can aid in the identification of low-risk patients who require no neuroimaging or only a brief period of observation. The management of the severely brain-injured patient requires a systematic approach focused on the avoidance of secondary injury, including hypotension, hypoxia, and hypoglycaemia. Most interventions to prevent secondary injury can be implemented at all facility levels. Urgent neuroimaging is recommended for patients with severe TBI followed by consultation with a neurosurgeon and transfer to an intensive care unit. The high incidence and poor outcomes of traumatic brain injury in Africa make this subject an important focus for future research and intervention to further guide optimal clinical care.
Collapse
|
3
|
Brown AM, Twomey DM, Wong Shee A. Evaluating mild traumatic brain injury management at a regional emergency department. Inj Prev 2018; 24:390-394. [PMID: 29866717 DOI: 10.1136/injuryprev-2018-042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Emergency departments (EDs) are usually the first point of contact, and often the only medical service available, for patients with mild traumatic brain injury (mTBI) in rural and regional areas. Clinical practice guidelines (CPGs) have been created to ensure best practice management of mTBI in EDs. Adherence to mTBI CPGs has rarely been evaluated in rural and regional areas. AIM The aim of this paper was to assess a regional health service's adherence to their mTBI CPG. METHODS This was a 12-month retrospective audit of 1280 ED records of patients ≥16 years presenting with mTBI to a regional Australian ED. Case selection used the Victorian Admitted Episodes Dataset codes for suspected head injury: principal diagnosis codes (S00-T98), concussive injury recorded in diagnosis codes (S06.00-S06.05) and unintentional external cause code (V00-X59). The data were collected to determine 4-hour observation rates, CT scan rates, safe discharge and appropriate referral documentation. RESULTS Fewer people received a CT scan than qualified (n=245, 65.3%), only 45% had 4-hour observations recorded, safe discharge was documented in 74.1% of cases and 33% received educational resources. DISCUSSION/CONCLUSION Several key elements for the management of mTBI were under-recorded, particularly 4-hour observations, safe discharge and education. Acquired brain injury clinic referrals were received in overwhelmingly fewer cases than had a CT scan (n=19, 6.3%). Overall, this study suggests that the regional health service does not currently fully adhere to the CPG and that the referral services are potentially underutilised.
Collapse
Affiliation(s)
- Ashlee Maree Brown
- School of Health Sciences and Psychology, Federation University Australia, Ballarat, Victoria, Australia
| | - Dara M Twomey
- School of Health Sciences and Psychology, Federation University Australia, Ballarat, Victoria, Australia
| | - Anna Wong Shee
- School of Medicine, Deakin Rural Health, Deakin University, Warrnambool, Victoria, Australia
| |
Collapse
|
4
|
Hayes JP, Reagan A, Logue MW, Hayes SM, Sadeh N, Miller DR, Verfaellie M, Wolf EJ, McGlinchey RE, Milberg WP, Stone A, Schichman SA, Miller MW. BDNF genotype is associated with hippocampal volume in mild traumatic brain injury. GENES BRAIN AND BEHAVIOR 2017; 17:107-117. [PMID: 28755387 DOI: 10.1111/gbb.12403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/01/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022]
Abstract
The negative long-term effects of mild traumatic brain injury (mTBI) have been a growing concern in recent years, with accumulating evidence suggesting that mTBI combined with additional vulnerability factors may induce neurodegenerative-type changes in the brain. However, the factors instantiating risk for neurodegenerative disease following mTBI are unknown. This study examined the link between mTBI and brain-derived neurotrophic factor (BDNF) genotype, which has previously been shown to regulate processes involved in neurodegeneration including synaptic plasticity and facilitation of neural survival through its expression. Specifically, we examined nine BDNF single-nucleotide polymorphisms (SNPs; rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850, rs11030107, rs7127507 and rs12273363) previously associated with brain atrophy or memory deficits in mTBI. Participants were 165 white, non-Hispanic Iraq and Afghanistan war veterans between the ages of 19 and 58, 110 of whom had at least one mTBI in their lifetime. Results showed that the BDNF SNP rs1157659 interacted with mTBI to predict hippocampal volume. Furthermore, exploratory analysis of functional resting state data showed that rs1157659 minor allele homozygotes with a history of mTBI had reduced functional connectivity in the default mode network compared to major allele homozygotes and heterozygotes. Apolipoprotein E (APOE) was not a significant predictor of hippocampal volume or functional connectivity. These results suggest that rs1157659 minor allele homozygotes may be at greater risk for neurodegeneration after exposure to mTBI and provide further evidence for a potential role for BDNF in regulating neural processes following mTBI.
Collapse
Affiliation(s)
- J P Hayes
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - A Reagan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - M W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - S M Hayes
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA.,Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - N Sadeh
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychological and Brain Studies, University of Delaware, Newark, DE, USA
| | - D R Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - M Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | - E J Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - R E McGlinchey
- Geriatric Research, Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - W P Milberg
- Geriatric Research, Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - S A Schichman
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - M W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury. Neural Plast 2015; 2016:4072402. [PMID: 26819765 PMCID: PMC4706919 DOI: 10.1155/2016/4072402] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.
Collapse
|
6
|
Stephens JA, Williamson KNC, Berryhill ME. Cognitive Rehabilitation After Traumatic Brain Injury: A Reference for Occupational Therapists. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2015; 35:5-22. [PMID: 26623474 DOI: 10.1177/1539449214561765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nearly 1.7 million Americans sustain a traumatic brain injury (TBI) each year. These injuries can result in physical, emotional, and cognitive consequences. While many individuals receive cognitive rehabilitation from occupational therapists (OTs), the interdisciplinary nature of TBI research makes it difficult to remain up-to-date on relevant findings. We conducted a literature review to identify and summarize interdisciplinary evidence-based practice targeting cognitive rehabilitation for civilian adults with TBI. Our review summarizes TBI background, and our cognitive remediation section focuses on the findings from 37 recent (since 2006) empirical articles directly related to cognitive rehabilitation for individuals (i.e., excluding special populations such as veterans or athletes). This manuscript is offered as a tool for OTs engaged in cognitive rehabilitation and as a means to highlight arenas where more empirical, interdisciplinary research is needed.
Collapse
|
7
|
Iraji A, Benson RR, Welch RD, O'Neil BJ, Woodard JL, Ayaz SI, Kulek A, Mika V, Medado P, Soltanian-Zadeh H, Liu T, Haacke EM, Kou Z. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses. J Neurotrauma 2015; 32:1031-45. [PMID: 25285363 DOI: 10.1089/neu.2014.3610] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting.
Collapse
Affiliation(s)
- Armin Iraji
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan
| | | | - Robert D Welch
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Brian J O'Neil
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - John L Woodard
- 4 Department of Psychology, Wayne State University , Detroit, Michigan
| | - Syed Imran Ayaz
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Andrew Kulek
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Valerie Mika
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | - Patrick Medado
- 3 Department of Emergency Medicine, Wayne State University , Detroit, Michigan
| | | | - Tianming Liu
- 6 Department of Computer Science, University of Georgia , Athens, Georgia
| | - E Mark Haacke
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,7 Department of Radiology, Wayne State University , Detroit, Michigan
| | - Zhifeng Kou
- 1 Department of Biomedical Engineering, Wayne State University , Detroit, Michigan.,7 Department of Radiology, Wayne State University , Detroit, Michigan
| |
Collapse
|
8
|
Johnson B, Zhang K, Hallett M, Slobounov S. Functional neuroimaging of acute oculomotor deficits in concussed athletes. Brain Imaging Behav 2014; 9:564-73. [DOI: 10.1007/s11682-014-9316-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Mild Traumatic Brain Injury: Are ED Providers Identifying Which Patients Are at Risk? J Emerg Nurs 2012; 38:435-42. [DOI: 10.1016/j.jen.2011.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/08/2011] [Accepted: 04/03/2011] [Indexed: 11/18/2022]
|
10
|
Johnson B, Zhang K, Gay M, Neuberger T, Horovitz S, Hallett M, Sebastianelli W, Slobounov S. Metabolic alterations in corpus callosum may compromise brain functional connectivity in MTBI patients: an 1H-MRS study. Neurosci Lett 2011; 509:5-8. [PMID: 22108503 DOI: 10.1016/j.neulet.2011.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
After clinical resolution of signs and symptoms of mild traumatic brain injury (MTBI) it is still not clear if there are residual abnormalities of structural or functional brain networks. We have previously documented disrupted interhemispheric functional connectivity in 'asymptomatic' concussed individuals during the sub-acute phase of injury. Testing of 15 normal volunteers (NV) and 15 subacute MTBI subjects was performed within 24h of clinical symptoms resolution and medical clearance for the first stage of aerobic activity. In this MRS study we report: (a) both in the genu and splenium of the corpus callosum NAA/Cho and NAA/Cr ratios were significantly (p<0.05) lower in MTBI subjects shortly after the injury compared to NVs, and (b) the metabolic ratio NAA/Cho in the splenium significantly correlated with the magnitude of inter-hippocampal functional connectivity in normal volunteers, but not in MTBI. This novel finding supports our hypothesis that the functional disruption of interhemispheric brain networks in MTBI subjects results from compromised metabolic integrity of the corpus callosum and that this persists despite apparent clinical return to baseline.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, 276 Recreation Building, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage 2011; 59:511-8. [PMID: 21846504 DOI: 10.1016/j.neuroimage.2011.07.081] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022] Open
Abstract
There are a number of symptoms, both neurological and behavioral, associated with a single episode of r mild traumatic brain injury (mTBI). Neuropsychological testing and conventional neuroimaging techniques are not sufficiently sensitive to detect these changes, which adds to the complexity and difficulty in relating symptoms from mTBI to their underlying structural or functional deficits. With the inability of traditional brain imaging techniques to properly assess the severity of brain damage induced by mTBI, there is hope that more advanced neuroimaging applications will be more sensitive, as well as specific, in accurately assessing mTBI. In this study, we used resting state functional magnetic resonance imaging to evaluate the default mode network (DMN) in the subacute phase of mTBI. Fourteen concussed student-athletes who were asymptomatic based upon clinical symptoms resolution and clearance for aerobic exercise by medical professionals were scanned using resting state functional magnetic resonance imaging. Nine additional asymptomatic yet not medically cleared athletes were recruited to investigate the effect of a single episode of mTBI versus multiple mTBIs on the resting state DMN. In concussed individuals the resting state DMN showed a reduced number of connections and strength of connections in the posterior cingulate and lateral parietal cortices. An increased number of connections and strength of connections was seen in the medial prefrontal cortex. Connections between the left dorso-lateral prefrontal cortex and left lateral parietal cortex showed a significant reduction in magnitude as the number of concussions increased. Regression analysis also indicated an overall loss of connectivity as the number of mTBI episodes increased. Our findings indicate that alterations in the brain resting state default mode network in the subacute phase of injury may be of use clinically in assessing the severity of mTBI and offering some insight into the pathophysiology of the disorder.
Collapse
|