1
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
2
|
Bediako JK, Apalangya V, Hodgson IOA, Anugwom I, Repo E. Adsorbents for water decontamination: A recycling alternative for fiber precursors and textile fiber wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:171000. [PMID: 38365021 DOI: 10.1016/j.scitotenv.2024.171000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The exponential growth in textile fiber production and commensurate release of textile waste-based effluents into the environment has significant impacts on human wellbeing and the long-term planetary health. To abate these negative impacts and promote resource circularity, efforts are being made to recycle these waste materials via conversion into adsorbents for water decontamination. This review critically examines plant- and regenerated cellulose-based fibers for removing water pollutants such as heavy metals, dyes, pharmaceutical and petrochemical wastes. The review reveals that chemical modification reactions such as grafting, sulfonation, carboxymethylation, amination, amidoximation, xanthation, carbon activation, and surface coating are normally employed, and the adsorption mechanisms often involve Van der Waals attraction, electrostatic interaction, complexation, chelation, ion exchange, and precipitation. Furthermore, the adsorption processes and thus the adsorption mechanisms are influenced by factors such as surface properties of adsorbents, pollutant characteristics including composition, porosity/pore size distribution, specific surface area, hydrophobicity/hydrophobicity, and molecular interactions. Besides, feasibility of the approaches in terms of handling and reuse, environmental fate, and economic impact was evaluated, in addition to the performances of the adsorbents, the prospects, and challenges. As current cost analysis is non-exhaustive, it is recommended that researchers focus on extensive cost analysis to fully appreciate the true cost effectiveness of employing these waste materials. In addition, more attention must be paid to potential chemical leaching, post-adsorption handling, and disposal. Based on the review, fiber precursors and textile fiber wastes are viable alternative adsorbents for sustainable water treatment and environmental management, and government entities must leverage on these locally accessible materials to promote recyclability and circularity.
Collapse
Affiliation(s)
- John Kwame Bediako
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland; Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Vitus Apalangya
- Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana
| | - Isaac O A Hodgson
- Department of Food Process Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana; Council for Scientific and Industrial Research (CSIR)-Water Research Institute, P. O. Box M 32, Accra, Ghana
| | - Ikenna Anugwom
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), FI-53850 Lappeenranta, Finland
| |
Collapse
|
3
|
Huang Z, Campbell R, Mangwandi C. Kinetics and Thermodynamics Study on Removal of Cr(VI) from Aqueous Solutions Using Acid-Modified Banana Peel (ABP) Adsorbents. Molecules 2024; 29:990. [PMID: 38474501 DOI: 10.3390/molecules29050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Banana peel waste is abundant and can be utilized as a low-cost adsorbent for removing toxic Cr (VI) from wastewater. The acid modification of banana peels significantly enhances their adsorption capacity for Cr (VI). An adsorbent was prepared by treating banana peel powder with 50% H2SO4 at 50 °C for 24 h. The acid treatment increased the surface area of the adsorbent from 0.0363 to 0.0507 m2/g. The optimum adsorbent dose was found to be 1 g/L for the complete removal of Cr (VI) from 100 ppm solutions. The adsorption capacity was 161 mg/g based on the Langmuir isotherm model. The adsorption kinetics followed a pseudo-second order model. Increasing the temperature from 20 to 50 °C increased the initial adsorption rate but had a minor effect on the equilibrium adsorption capacity. Thermodynamics studies showed that the process was spontaneous and endothermic. The activation energy was estimated as 24.5 kJ/mol, indicating physisorption. FTIR analyses before and after adsorption showed the involvement of hydroxyl, carbonyl and carboxyl groups in binding the Cr (VI). The Cr (VI) was reduced to Cr (III), which then bound to functional groups on the adsorbent. Desorption under acidic conditions could recover 36% of the adsorbed Cr as Cr (III). No desorption occurred at a neutral pH, indicating irreversible adsorption. Overall, acid-modified banana peel is an efficient, low-cost and eco-friendly adsorbent for removing toxic Cr (VI) from wastewater.
Collapse
Affiliation(s)
- Zhouyang Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Kier Building, Stranmillis Road, Belfast BT95AG, Northern Ireland, UK
| | - Robyn Campbell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Kier Building, Stranmillis Road, Belfast BT95AG, Northern Ireland, UK
| | - Chirangano Mangwandi
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Kier Building, Stranmillis Road, Belfast BT95AG, Northern Ireland, UK
| |
Collapse
|
4
|
Netzahuatl-Muñoz AR, Aranda-García E, Cristiani-Urbina E. Chromium Recovery from Chromium-Loaded Cupressus lusitanica Bark in Two-Stage Desorption Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:3222. [PMID: 37765386 PMCID: PMC10536073 DOI: 10.3390/plants12183222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Hexavalent chromium (Cr(VI)) contamination poses serious health and environmental risks. Chromium biosorption has been employed as an effective means of eradicating Cr(VI) contamination. However, research on chromium desorption from chromium-loaded biosorbents is scarce despite its importance in facilitating industrial-scale chromium biosorption. In this study, single- and two-stage chromium desorption from chromium-loaded Cupressus lusitanica bark (CLB) was conducted. Thirty eluent solutions were evaluated first; the highest single-stage chromium desorption efficiencies were achieved when eluent solutions of 0.5 M NaOH, 0.5 M H2SO4, and 0.5 M H2C2O4 were used. Subsequently, two-stage kinetic studies of chromium desorption were performed. The results revealed that using 0.5 M NaOH solution in the first stage and 0.5 M H2C2O4 in the second stage enabled the recovery of almost all the chromium initially bound to CLB (desorption efficiency = 95.9-96.1%) within long (168 h) and short (3 h) desorption periods at each stage. This study clearly demonstrated that the oxidation state of the recovered chromium depends on the chemical nature and concentration of the eluent solution. The results suggest the possible regeneration of chromium-loaded CLB for its subsequent use in other biosorption/desorption cycles.
Collapse
Affiliation(s)
- Alma Rosa Netzahuatl-Muñoz
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
- Programa de Ingeniería en Biotecnología, Universidad Politécnica de Tlaxcala, Avenida Universidad Politécnica No. 1, Colonia San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala 90180, Mexico
| | - Erick Aranda-García
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Mexico City 07738, Mexico
| |
Collapse
|
5
|
Li J, Yan Z, Liu M, Han X, Lu T, Liu R, Zhao S, Lv Q, Li B, Zhao S, Wang H. Triple Silicon, Phosphorous, and Nitrogen-Grafted Lignin-Based Flame Retardant and Its Vulcanization Promotion for Styrene Butadiene Rubber. ACS OMEGA 2023; 8:21549-21558. [PMID: 37360429 PMCID: PMC10286291 DOI: 10.1021/acsomega.3c00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
In this study, we present an innovative environmental silicon-, phosphorus-, and nitrogen-triple lignin-based flame retardant (Lig-K-DOPO). Lig-K-DOPO was successfully prepared by condensation of lignin with flame retardant intermediate DOPO-KH550 synthesized via Atherton-Todd reaction between 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and γ-aminopropyl triethoxysilane (KH550A). The presence of silicon, phosphate, and nitrogen groups was characterized by FTIR, XPS, and 31P NMR spectroscopy. Lig-K-DOPO exhibited advanced thermal stability compared with pristine lignin supported by TGA analysis. The curing characteristic measurement showed that addition of Lig-K-DOPO promoted the curing rate and crosslink density to styrene butadiene rubber (SBR). Moreover, the cone calorimetry results indicated Lig-K-DOPO conferred impressive flame retardancy and smoke suppression. The addition of 20 phr Lig-K-DOPO reduced SBR blends 19.1% peak heat release rate (PHRR), 13.2% total heat release (THR), 53.2% smoke production rate (SPR), and 45.7% peak smoke production rate (PSPR). This strategy provides insights into multifunctional additives and greatly extends the comprehensive utilization of industrial lignin.
Collapse
Affiliation(s)
- Jianxing Li
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zepei Yan
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Liu
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaokun Han
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tianyun Lu
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ruiyin Liu
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shugao Zhao
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Qing Lv
- Jiangyin
Haida Rubber and Plastic Co., Ltd., Jiangyin 214424, China
| | - Bo Li
- Jiangyin
Haida Rubber and Plastic Co., Ltd., Jiangyin 214424, China
| | - Shengqin Zhao
- Chair
of Composite Engineering (CCe), Technische
Universität Kaiserslautern (TUK), Kaiserslautern 67663, Germany
| | - He Wang
- Key
Laboratory of Rubber-Plastics of Ministry of Education/Shandong Provincial
Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Anjum A, Mazari SA, Hashmi Z, Jatoi AS, Abro R, Bhutto AW, Mubarak NM, Dehghani MH, Karri RR, Mahvi AH, Nasseri S. A review of novel green adsorbents as a sustainable alternative for the remediation of chromium (VI) from water environments. Heliyon 2023; 9:e15575. [PMID: 37153391 PMCID: PMC10160521 DOI: 10.1016/j.heliyon.2023.e15575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).
Collapse
Affiliation(s)
- Amna Anjum
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
- Corresponding author.
| | - Zubair Hashmi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Rashid Abro
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Waheed Bhutto
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
- Corresponding author.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding author. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liu P, Gong Y, Yang C, Ledesma-Amaro R, Park YK, Deng S, Wang Y, Wei H, Chen W. Biorefining of rapeseed meal: A new and sustainable strategy for improving Cr(VI) biosorption on residual wastes from agricultural byproducts after phenolic extraction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:70-81. [PMID: 37086658 DOI: 10.1016/j.wasman.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Phenolic recovery from agricultural byproducts has been highlighted due to their health-promoting bioactivities. However, uncontrolled discard of residues after extraction process would induce environmental pollution and bioresource waste. In this study, biorefining of phenolic-rich rapeseed meal (RSM) and its defatted sample (dRSM) was attempted by holistic utilization of phenolic extract and residue separately. Phenolic removal could significantly improve residues' Cr(VI) adsorption capacities by about 21%, which presented extended physical surface and more released functional groups. Moreover, simulating raw material by remixing 3% separated phenolic extracts or main component sinapic acid therein with corresponding residues further improved about 12% adsorption efficiencies. These indicated that the different present forms of phenolics had opposite effects on Cr(VI) removal. While natural conjugational form inhibited hosts' biosorption, free form had enhanced functions for either extract or residue. Four optimal adsorption parameters (pH, adsorbent dosage, contact time and initial Cr(VI) concentration), three kinetic (pseudo-first order, pseudo-second order and intra-particle diffusion) models and two isotherms (Langmuir and Freundlich) were used to reveal the adsorption process. The maximum Cr(VI) adsorption capacity on residues could reach about 100 mg/g, which was superior to that of most biosorbents derived from agricultural byproducts, even some biochar. Together with the residues' advantages with everlasting capacity after 3 adsorption-desorption cycles and excellent abilities for adsorbing multiple co-existed metal ions (Cr(VI), Cd(II), Cu(II), Pb(II), Ni(II) and Zn(II)), phenolic recovery was first proved to be a new and sustainable strategy for modifying biosorbents from agricultural byproducts with zero waste.
Collapse
Affiliation(s)
- Pei Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Young-Kyoung Park
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Shiyu Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| | - Yuliang Wang
- Hubei University of Technology, Wuhan 430068, PR China
| | - Hongbo Wei
- Yangtze University, Jingzhou 434025, PR China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China.
| |
Collapse
|
8
|
Ren X, Wang CC, Li Y, Wang P, Gao S. Defective SO 3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130552. [PMID: 36502718 DOI: 10.1016/j.jhazmat.2022.130552] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
For broad-spectrum adsorption and capture toward cationic metal ions, a facile strategy was adopted to fabricate defective SO3H-MIL-101(Cr) (SS-SO3H-MIL-101(Cr)-X, X = 2, 3, 4) with enhanced vacancies using seignette salt (SS) as the modulating agent. The boosted adsorption performances of SS-SO3H-MIL-101(Cr)-X toward eight different ions, including Ag+, Cs+, Pb2+, Cd2+, Ba2+, Sr2+, Eu3+ and La3+ in both individual component and mixed component systems, could be ascribed to the effective mass transfer resulting from the exposure of defective sites. Especially, the optimal SS-SO3H-MIL-101(Cr)-3 could remove all the selected metal cations to below the permissible limits required by the World Health Organization (WHO) in the continuous-flow water treatment system. Furthermore, SS-SO3H-MIL-101(Cr)-3 exhibited good adsorption capacity (189.6 mg·g-1) toward Pb2+ under neutral condition and excellent desorption recirculation performance (removal efficiency > 95% after 5 cycles). Moreover, the adsorption mechanism involved the electrostatic adsorption and coordinative interactions resulting from complexation between the adsorption active sites and targeted cations (like Cr-O-M and S-O-M), which were explored systematically via both X-ray photoelectron spectroscopy (XPS) determination and density functional theory (DFT) calculations. Overall, this work provided guidance for modulating SS-SO3H-MIL-101(Cr)-X to promote its potential application in widespread metal cations removal from wastewater.
Collapse
Affiliation(s)
- Xueying Ren
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Shijie Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
9
|
Lourenço A, Kukić D, Vasić V, Costa RA, Antov M, Šćiban M, Gominho J. Valorisation of Lignocellulosic Wastes, the Case Study of Eucalypt Stumps Lignin as Bioadsorbent for the Removal of Cr(VI). Molecules 2022; 27:molecules27196246. [PMID: 36234783 PMCID: PMC9571115 DOI: 10.3390/molecules27196246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The main objective of this work was to assess Eucalyptus globulus lignin as an adsorbent and compare the results with kraft lignin, which has previously been demonstrated to be an effective adsorbent. Eucalypt lignin was extracted (by the dioxane technique), characterised, and its adsorption properties for Cr(VI) ions were evaluated. The monomeric composition of both types of lignin indicated a high content of guaiacyl (G) and syringyl (S) units but low content of p-hydroxyphenyl (H), with an H:G:S ratio of 1:50:146 (eucalypt lignin) and 1:16:26 (kraft lignin), as determined by Py-GC/MS. According to elemental analysis, sulphur (2%) and sodium (1%) were found in kraft lignin, but not in eucalypt lignin. The adsorption capacity of the eucalypt lignin was notably higher than the kraft lignin during the first 8 h, but practically all the ions had been absorbed by both the eucalypt and kraft lignin after 24 h (93.4% and 95%, respectively). Cr(VI) adsorption onto both lignins fitted well using the Langmuir adsorption isotherm model, with capacities of 256.4 and 303.0 mg/g, respectively, for eucalypt and kraft. The study’s overall results demonstrate the great potential of eucalypt lignin as a biosorbent for Cr(VI) removal from aqueous solutions.
Collapse
Affiliation(s)
- Ana Lourenço
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
- Correspondence: ; Tel.: +351-213-653-384
| | - Dragana Kukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Vesna Vasić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Ricardo A. Costa
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
| | - Mirjana Antov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Marina Šćiban
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Jorge Gominho
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-17 Lisboa, Portugal
| |
Collapse
|
10
|
Guleria A, Kumari G, Lima EC, Ashish DK, Thakur V, Singh K. Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153689. [PMID: 35143799 DOI: 10.1016/j.scitotenv.2022.153689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is most abundant, ecofriendly and sustainable material on this green planet which has received great attention due to exhaustion of petroleum reserves and various environmental complications. Due to its abundance and sustainability, it has been opted in number of advanced applications i.e. synthesis of green chemicals, biofuels, paper, packaging, biocomposite and for discharge of toxic contaminants from wastewaters. Utilization of sustainable biomass for removal of toxic pollutants from wastewater is robust technique due to its low-cost and easy availability. In this review, we have summarized removal of inorganic pollutants by sustainable lignocellulosic biomass in their natural as well as in chemically functionalized form. Various techniques for modification of sustainable biomass have been discussed and it was found that modified biomass showed better biosorption ability as compared to natural biomass. We conclude that modified biomass biosorbents are useful for removal of toxic inorganic pollutants to deficient levels. Several modification strategies can improve the qualities of biosorbent, however grafting is the most successful among them, as demonstrated in this work. The numerous grafting methods using a free radical grafting process are also summarized in this review article. This review also gathers studies comparing sorption capabilities with and without modification using modified and unmodified biosorbents. Chemically modified cellulosic biomass is favoured over untreated biomass because it has a higher adsorption efficiency, which is favoured by a large number of reactive binding sites, improved ion-exchange characteristics, and more functional groups available after modification.
Collapse
Affiliation(s)
- Ashish Guleria
- Department of Applied Sciences, WIT, Dehradun 248007, India
| | - Garima Kumari
- Department of Biotechnology, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh 173101, India
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), 15003, Brazil
| | - Deepankar Kumar Ashish
- Department of Civil Engineering, Maharaja Agrasen Institute of Technology, Maharaja Agrasen University, Baddi 174103, India.
| | - Vaishali Thakur
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi 174103, India
| | - Kulvinder Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| |
Collapse
|
11
|
Imran MS, Javed T, Areej I, Haider MN. Sequestration of crystal violet dye from wastewater using low-cost coconut husk as a potential adsorbent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2295-2317. [PMID: 35486456 DOI: 10.2166/wst.2022.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The current study explores the effectiveness of coconut husk for crystal violet dye sequestration employing a batch experimental setup. Characterization of adsorbent was carried out via FTIR, and SEM techniques and results confirmed the involvement of -OMe, -COC- and hydroxyl functional groups in dye uptake, and the rough, porous nature of adsorbent and after adsorption dye molecules colonized these holes resulting in dye exclusion. Effects of various adsorption parameters such as pH, adsorbent dose, contact time, initial dye concentration, and temperature of solution were studied. Crystal violet adsorption on coconut husk was highly pH-dependent, with maximum removal occurring at basic pH. Maximum removal of dye, i.e., 81%, takes place at optimized conditions. Kinetic data was analyzed by pseudo-first, pseudo-second order and an intra-particle diffusion model. Results showed that the pseudo-second order kinetic model best described adsorption of crystal violet onto coconut husk. Langmuir, Freundlich, and D-R adsorption isotherms were also used to test their appropriateness to experimental data and the Freundlich isotherm fits best to data. Thermodynamic parameters showed that the current process was spontaneous, endothermic in nature with continuous decrease in entropy. Established practice is 79% applicable to tap water and in acidic medium nearly 80% of adsorbent was recovered, confirming the effectiveness and appropriateness of coconut husk for crystal violet dye exclusion from wastewater.
Collapse
Affiliation(s)
- Muhammad Sajid Imran
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Punjab, Pakistan E-mail:
| | - Tariq Javed
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Punjab, Pakistan E-mail:
| | - Isham Areej
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Punjab, Pakistan E-mail:
| | - Muhammad Nouman Haider
- Department of Chemistry, Government College University, Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
12
|
Zeng S, Zhong D, Xu Y, Zhong N. Biochar-loaded nZVI/Ni bimetallic particles for hexavalent chromium removal from aqueous solution. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sijing Zeng
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
13
|
Dutta D, Arya S, Kumar S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. CHEMOSPHERE 2021; 285:131245. [PMID: 34246094 DOI: 10.1016/j.chemosphere.2021.131245] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/12/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid urbanization and industrialization have inextricably linked to water consumption and wastewater generation. Mining resources from industrial wastewater has proved to be an excellent source of secondary raw materials i.e., proficient for providing economic and financial benefits, clean and sustainable resilient environment, and achieving sustainable development goals (SDGs). Treatment of industrial wastewater for reusable resources has become a tedious task for decision-makers due to several bottlenecks and barriers, such as inefficient treatment options, high-cost expenditure, poor infrastructure, lack of financial support, and technical know-how. Most of the existing methods are conventional and fails to provide an economic benefit to the industries and have certain disadvantages. Also, the untreated industrial wastewater is discharged into the open drains, lakes, and rivers that lead to environmental pollution and severe health hazards. This paper has consolidated information about the current trends, opportunities, bottlenecks, and best practices associated with wastewater treatment and scope for the advancement in the existing technologies. Along with the efficient resource recovery, the wastewater could be ideally explored in the development of value-added materials, energy, and product recovery. The concepts, such as the circular economy (CE), partitions-release-recover (PRR), and transforming wastewater into bio factory are anticipated to be more convenient options to tackle the industrial wastewater menace.
Collapse
Affiliation(s)
- Deblina Dutta
- School of Environmental Science & Engineering, Indian Institute of Technology Kharagpur, 721 302, India
| | - Shashi Arya
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Sunil Kumar
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Kumari B, Tiwary RK, Yadav M, Singh KMP. Nonlinear regression analysis and response surface modeling of Cr (VI) removal from synthetic wastewater by an agro-waste Cocos Nucifera: Box-Behnken Design (BBD). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:791-808. [PMID: 33349031 DOI: 10.1080/15226514.2020.1858399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study mixture of coconut shell and coir was used for Cr (VI) removal from synthetic wastewater and statistical tool Response Surface Modeling (RSM) was applied to optimize process parameters. The solution pH (2-6), reaction time (20-100 minutes) and adsorbent quantity (0.03-0.2 g) was optimized to find the maximum response of Cr (VI) removal using statistical Box-Behnken design (BBD) software. The equilibrium data obtained by the batch experiment were analyzed by ANOVA and found fitted in a second-order polynomial equation through multiple regression analysis. The optimum value of pH, adsorbent quantity and reaction time for 99% of Cr(VI) was found as 2, 0.1 g and 100 minutes, respectively. By using non-linear regression method it was found that Freundlich isotherm and Pseudo-second-order kinetic with high correlation coefficient (R2), low Chi-square (χ2) and root mean squares errors (RMSE), best describe the adsorption of Cr (VI) on mixture of coconut shell and coir (MCSC) surface. Positive enthalpy (ΔH°) and negative Gibbs free energy (ΔGo) values confirm the endothermic and spontaneous nature of adsorption process. Pre and post adsorption phenomenon was confirmed by characterization of adsorbent using AFM, FTIR, SEM, and EDX analysis. The adsorbent MCSC has regenerative property and can be reused 3-4 times after treating with alkaline medium (0.2 N NaOH) and offered more than 60% removal of Cr (VI) at the fourth cycle. It can be inferred based on this study that MCSC is an effective adsorbent for Cr (VI) removal and can be used on an industrial scale for social and environmental benefit. Novelty statement An agriculture waste mixture of coconut shell and coir (MCSC) without the addition of any chemical reagent, was used for Cr(VI) removal. As per literature survey and best of our knowledge, the adsorbent MCSC has not been reported for Cr (VI) removal. In the previous study, authors reported either coconut coir pith or coconut shell or coconut charcoal as adsorbent for Cr (VI) removal. The adsorbent MCSC is efficient even at very low doses (0.1 g) as compared to the reported adsorbent.
Collapse
Affiliation(s)
- Binu Kumari
- Department of NREM, CSIR-CIMFR, Dhanbad, India
| | | | | | | |
Collapse
|
15
|
Han J, Hu L, He L, Ji K, Liu Y, Chen C, Luo X, Tan N. Preparation and uranium (VI) biosorption for tri-amidoxime modified marine fungus material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37313-37323. [PMID: 31970635 DOI: 10.1007/s11356-020-07746-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
The preparation, characterization, and uranium (VI) adsorption properties of tri-amidoxime modified marine fungus material (ZZF51-GPTS-EDA-AM/ZGEA) were investigated in this study. ZGEA was synthesized by four steps of condensation, nucleophilic substitution, electrophilic addition, and nitrile amidoxime and characterized by a series of methods containing FT-IR, TGA, SEM, and BET. Contrasted with uranium (VI) adsorption capacity of original fungus mycelium (15.46 mg g-1) that of the functional material (584.60 mg g-1) was great under the optimal factors such as uranium (VI) ion concentration 40 mg L-1, solid-liquid ratio 50 mg L-1, pH of solution 5.5, and reaction time 120 min. The above data were obtained by the orthogonal method. The cyclic tests showed that ZGEA had good regeneration performance, and it could be recycled at least five adsorption-desorption processes. The thermodynamic experimental adsorption result fitted Langmuir and Freundlich models, which explored monolayer and double layers of uranium (VI) adsorption mechanism, and the kinetic adsorption results were in better consistent with the pseudo-second-order and pseudo-first-order dynamic models (R2 > 0.999).
Collapse
Affiliation(s)
- Jingwen Han
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lin Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Leqing He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Kang Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yaqing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Can Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xiaomei Luo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Ni Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
16
|
Baral SS, Mohanasundaram K, Ganesan S. Selection of suitable adsorbent for the removal of Cr(VI) by using objective based multiple attribute decision making method. Prep Biochem Biotechnol 2020; 51:69-75. [PMID: 32687012 DOI: 10.1080/10826068.2020.1789993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the current manuscript is to develop a systematic and simplified expert system for the selection of suitable adsorbent to treat Cr(VI). Selection of adsorbent among the large options available by considering all possible factors and their interaction is required in an easy, organized and rational way. In this study, fuzzy logic is used for the choosing an appropriate adsorbent for the Cr(VI) removal. Multiple attribute decision making (MADM) is utilized to work out the relative weighting values for the chosen sorbent. The preference index is calculated by using the subjective and objective weights. The normalized value associated with each parameter has given on the basis of effect of each parameter on the removal of Cr(VI) and uptake capacity of each material. The associated MADM method results and the barriers of the approach is mentioned to lay the basis for in addition enhancement.
Collapse
|
17
|
Jiao C, Tan X, Lin A, Yang W. Preparation of Activated Carbon Supported Bead String Structure Nano Zero Valent Iron in a Polyethylene Glycol-Aqueous Solution and Its Efficient Treatment of Cr(VI) Wastewater. Molecules 2019; 25:molecules25010047. [PMID: 31877736 PMCID: PMC6982729 DOI: 10.3390/molecules25010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Nanometer zero-valent iron (nZVI) has been widely used in the treatment of heavy metals such as hexavalent chromium (Cr(VI)). A novel composite of bead string-structured nZVI on modified activated carbon (nZVI–MAC) is prepared here, using polyethylene glycol as the stable dispersant rather than traditional ethanol during the loading process. The microstructure characterization shows that nZVI particles are loaded on MAC with a bead string structure in large quantity and stably due to the addition of hydroxyl functional groups on the surface by polyethylene glycol. Experiments on the treatment of Cr(VI) in wastewater show that the reaction process requires only 20 min to achieve equilibrium. The removal rate of Cr(VI) with a low concentration (80–100 mg/L) is over 99% and the maximum saturation removal capacity is up to 66 mg/g. The system converts Cr(VI) to trivalent chromium (Cr(III)) through an oxidation-reduction effect and forms an insoluble material with iron ions by coprecipitation, which is then adsorbed on the surface of the nZVI–MAC. The process conforms to the quasi-second order adsorption kinetics equation (mainly chemical adsorption process).
Collapse
Affiliation(s)
- Chunlei Jiao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (C.J.); (X.T.)
| | - Wenjie Yang
- College of Renewable Energy, North China Electric Power University, Beijing 102206, China
- Chinese Academy for Environmental Planning, Beijing 100012, China
- Correspondence:
| |
Collapse
|
18
|
Subedi N, Lähde A, Abu-Danso E, Iqbal J, Bhatnagar A. A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. Int J Biol Macromol 2019; 137:948-959. [DOI: 10.1016/j.ijbiomac.2019.06.151] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
|
19
|
Pakade VE, Tavengwa NT, Madikizela LM. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 2019; 9:26142-26164. [PMID: 35531021 PMCID: PMC9070541 DOI: 10.1039/c9ra05188k] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Chromium exists mainly in two forms in environmental matrices, namely, the hexavalent (Cr(vi)) and trivalent (Cr(iii)) chromium. While Cr(iii) is a micronutrient, Cr(vi) is a known carcinogen, and that warrants removal from environmental samples. Amongst the removal techniques reported in the literature, adsorption methods are viewed as superior to other methods because they use less chemicals; consequently, they are less toxic and easy to handle. Mitigation of chromium using adsorption methods has been achieved by exploiting the physical, chemical, and biological properties of Cr(vi) due to its dissolution tendencies in aqueous solutions. Many adsorbents, including synthetic polymers, activated carbons, biomass, graphene oxide, and nanoparticles as well as bioremediation, have been successfully applied in Cr(vi) remediation. Initially, adsorbents were used singly in their natural form, but recent literature shows that more composite materials are generated and applied. This review focused on the recent advances, insights, and project future directions for these adsorbents as well as compare and contrast the performances achieved by the mentioned adsorbents and their variants.
Collapse
Affiliation(s)
- Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology Private Bag X 021 Vanderbijlpark South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, University of Venda Private Bag X5050 Thohoyandou 0950 South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology PO Box 1334 Durban 4000 South Africa
| |
Collapse
|
20
|
Wang B, Sun YC, Sun RC. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2019. [DOI: 10.1186/s42825-019-0003-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Ntuli TD, Pakade VE. Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption–reduction mechanism: Adsorption isotherms, kinetics and thermodynamics. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1581619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Themba Dominic Ntuli
- Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
22
|
Khare N, Bajpai J, Bajpai A. Graphene coated iron oxide (GCIO) nanoparticles as efficient adsorbent for removal of chromium ions: Preparation, characterization and batch adsorption studies. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Sun Q, Saratale RG, Saratale GD, Kim DS. Pristine and modified radix Angelicae dahuricae (Baizhi) residue for the adsorption of methylene blue from aqueous solution: A comparative study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Adsorptive Removal of Hexavalent Chromium by Diphenylcarbazide-Grafted Macadamia Nutshell Powder. Bioinorg Chem Appl 2018; 2018:6171906. [PMID: 29849541 PMCID: PMC5933043 DOI: 10.1155/2018/6171906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Macadamia nutshell powder oxidized by hydrogen peroxide solutions (MHP) was functionalized by immobilizing 1,5′-diphenylcarbazide (DPC) on its surface. The effectiveness of grafting was confirmed by the Fourier transform infrared spectrum due to the presence of NH and C=C stretches at 3361, 1591, and 1486 cm−1, respectively, on the grafted material which were absent in the nongrafted material. Thermogravimetric analysis revealed that the presence of DPC on the surface of Macadamia shells lowered the thermal stability from 300°C to about 180°C owing to the volatile nature of DPC. Surface roughness as a result of grafting was appreciated on the scanning electron microscopy images. Parameters influencing the adsorptive removal of Cr(VI) were examined and found to be optimal at pH 2, 120 min, 150 mg/L, and 2.5 g/L. Grafting MHP with DPC leads to an increase in the Langmuir monolayer capacity from 37.74 to 72.12 mg/g. Grafting MHP with DPC produced adsorbent with improved removal efficiency for Cr(VI).
Collapse
|
25
|
Yu XL, He Y. Optimal ranges of variables for an effective adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs. Sci Rep 2018; 8:729. [PMID: 29335513 PMCID: PMC5768755 DOI: 10.1038/s41598-018-19227-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
The capacity of pomelo peels' adsorption on lead(II) from aqueous solutions without modifications was investigated and confirmed. Four variables in this study, pH, temperature, time and initial concentration of lead(II), significantly affected the adsorption rate of pomelo peels. The prediction model and optimal ranges of optimized variables were given by Doehlert designs, which made the selection of variables rapid, flexible and effortless to obtain an adsorption rate reaching 99.9% and 20 mg/L for initial lead(II) concentration, 3 for pH, 50 °C for temperature and 210 min for time was a choice. The higher correlation coefficient as well as the more consistent value of experimental equilibrium adsorption capacity of the pseudo-first-order model suggested it bore a better prediction of the adsorption kinetics than the pseudo-second-order model. Langmuir model indicated the adsorption mechanism of pomelo peels was monolayer sorption with the help of both physical adsorption and chemical bonding, which were demonstrated by scanning electron microscopy and Fourier transform-infrared, respectively. The ability of pomelo peels to adsorb lead(II) from aqueous solutions was not interfered with the presence of calcium(II), magnesium(II), copper(II) and zinc(II). Pomelo peels had the potential to be utilized in the simultaneous adsorption of toxic heavy metal ions.
Collapse
Affiliation(s)
- Xiao-Lan Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
26
|
Labied R, Benturki O, Eddine Hamitouche AY, Donnot A. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617417750739] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In aqueous solutions, hexavalent chromium Cr(VI) was successfully removed by activated carbon “ Z. jujuba rubidium carbonate-activated carbon” obtained from waste lignocellulosic material ( Ziziphus jujuba cores). Rubidium carbonate was used to prepare Z. jujuba rubidium carbonate-activated carbon by chemical activation using a 1:1 w/w ratio. Our results indicate that the obtained surface area of the activated carbon was equal to 608.31 m2/g. The adsorption study of Cr(VI) was investigated under batch conditions at constant stirring speed (220 r/min). Factors such as pH (1–6), temperature (20–40°C), adsorbent concentration (0.5–3 g/l), and initial Cr(VI) concentration (50–500 mg/l) were all studied to attain the maximum removal efficiency. Prior to the adsorption process, the morphology, elementary composition, and loss mass of activated carbon were characterized using scanning electron microscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Fourier transform infrared analysis of the adsorbent demonstrated the presence of key functional groups associated with the adsorption phenomenon such as those of hydroxyl and aromatic groups. The obtained results showed that the optimal conditions for a maximum adsorption efficiency are 2 for pH, 1 g/l for activated carbon dosage and 100 mg/l for Cr(VI) concentration. The removal percentage increased from 27.2 to 62.08%. The kinetic sorption was described by a pseudo-second-order kinetic equation ( R2 ≈ 0.995). The Tóth ( R2 = 0.997) and Elovich models were best to explain the sorption phenomenon. Thermodynamic studies showed that the adsorption of Cr(VI) onto activated carbon was feasible, spontaneous, and endothermic at 20–40°C. This novel Z. jujuba rubidium carbonate-activated carbon derived from Z. jujuba core has been found to be effective for the removal of Cr(VI) and not harmful to the ecosystem.
Collapse
Affiliation(s)
- Radia Labied
- USTHB, Algeria; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (C.R.A.P.C), Algeria
| | | | | | | |
Collapse
|
27
|
Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2017; 332:79-86. [PMID: 28285109 DOI: 10.1016/j.jhazmat.2017.03.002] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
Three types of modified biochar (BC) were produced respectively with acid (HCl) treatment (HCl-BC), base (KOH) treatment (KOH-BC) and oxidation (H2O2) treatment (H2O2-BC) of raw biochar. Both the raw biochar and modified biochars supported zero valent iron nanopartilces (nZVI) (i.e. nZVI@BC, nZVI@HCl-BC, nZVI@KOH-BC and nZVI@H2O2-BC) were synthesized and their capacities for Cr(VI) removal were compared. The results showed that the nZVI@HCl-BC exhibited the best performance and the underlying mechanisms were discussed. The surface elemental distribution maps of the nZVI@HCl-BC after reaction with Cr(VI) showed that Fe, Cr and O elements were deposited on the surface of HCl-BC evenly, indicating that the formed Cr(III)/Fe(III) could settle on the surface of HCl-BC uniformly rather than coated only on the nZVI surface. This reveals that the supporter HCl-BC could also play a role in alleviating the passivation of nZVI. Besides, the effects of mass ratio (nZVI/HCl-BC), pH, and initial Cr(VI) concentration on Cr(VI) removal were examined. At lower mass of HCl-BC, nZVI aggregation cannot be fully inhibited on the surface of HCl-BC, whereas excessive biochar can block the active sites of nZVI. Additionally, it was found that Cr(VI) removal by nZVI@HCl-BC was dependent on both pH and initial Cr(VI) concentration.
Collapse
Affiliation(s)
- Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Cong Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zhao Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
28
|
Equilibrium, kinetic and thermodynamic studies of Cr(VI) adsorption from aqueous solution onto manganese oxide coated sand grain (MOCSG). J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Riahi Samani M, Ebrahimbabaie P, Vafaei Molamahmood H. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2305-2313. [PMID: 27858787 DOI: 10.2166/wst.2016.412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.
Collapse
Affiliation(s)
- Majid Riahi Samani
- Department of Civil Engineering, Khomeinishahr Branch, Islamic Azad University, Khominishahr, Isfahan, Iran
| | - Parisa Ebrahimbabaie
- Department of Environment and Energy, Islamic Azad University of Tehran Science and Research Branch, Tehran, Iran
| | | |
Collapse
|
30
|
Zhou L, Liu Y, Liu S, Yin Y, Zeng G, Tan X, Hu X, Hu X, Jiang L, Ding Y, Liu S, Huang X. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. BIORESOURCE TECHNOLOGY 2016; 218:351-9. [PMID: 27376834 DOI: 10.1016/j.biortech.2016.06.102] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 05/20/2023]
Abstract
To investigate the relationship between Cr(VI) adsorption mechanisms and physio-chemical properties of biochar, ramie residues were oxygen-limited pyrolyzed under temperature varying from 300 to 600°C. Batch adsorption experiments indicated that higher pyrolysis temperature limits Cr(VI) sorption in terms of capacity and affinity due to a higher aromatic structure and fewer polar functional groups in biochar. Both electrostatic (physical) and ionic (chemical) interactions were involved in the Cr(VI) removal. For low-temperature biochar, the simple physical adsorption was limited and the significant improvement in Cr(VI) sorption was attributed to abundant carboxyl and hydroxyl groups. The adsorption-reduction mechanisms could be concluded that Cr(VI) ions were electrostatically attracted by the positively charged biochar surface and reduced to Cr(III), and then the converted Cr(III) was retained or discharged into the solution. The study demonstrates ramie residues can be converted into biochar as a low-cost and effective sorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha 410082, PR China
| | - Yicheng Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xi Hu
- College of Environmental Science and Engineering Research, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Luhua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shaoheng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xixian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
31
|
Nakkeeran E, Saranya N, Giri Nandagopal MS, Santhiagu A, Selvaraju N. Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:812-821. [PMID: 26853060 DOI: 10.1080/15226514.2016.1146229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions.
Collapse
Affiliation(s)
- E Nakkeeran
- a Department of Chemical Engineering , National Institute of Technology Calicut , Kozhikode , Kerala , India
| | - N Saranya
- a Department of Chemical Engineering , National Institute of Technology Calicut , Kozhikode , Kerala , India
| | - M S Giri Nandagopal
- a Department of Chemical Engineering , National Institute of Technology Calicut , Kozhikode , Kerala , India
| | - A Santhiagu
- b School of Biotechnology, National Institute of Technology Calicut , Kozhikode , Kerala , India
| | - N Selvaraju
- a Department of Chemical Engineering , National Institute of Technology Calicut , Kozhikode , Kerala , India
| |
Collapse
|
32
|
Varshney S, Jain P, Srivastava S. Designing and potential use of tailored wood pulp to remove heavy metals from aqueous system: Kinetic and thermodynamic studies. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1165247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shilpa Varshney
- Research Scholar, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India
| | - Priyanka Jain
- Research Scholar, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India
| | - Shalini Srivastava
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India
| |
Collapse
|
33
|
Yao X, Deng S, Wu R, Hong S, Wang B, Huang J, Wang Y, Yu G. Highly efficient removal of hexavalent chromium from electroplating wastewater using aminated wheat straw. RSC Adv 2016. [DOI: 10.1039/c5ra24508g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly efficient aminated wheat straw had high adsorption and selectivity for Cr(vi) in electroplating wastewater, and some adsorbed Cr(vi) were reduced to Cr(iii) and released into solution.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Shubo Deng
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Rui Wu
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Siqi Hong
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Bin Wang
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Jun Huang
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Yujue Wang
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| | - Gang Yu
- School of Environment
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC)
- Beijing Key Laboratory for Emerging Organic Contaminants Control
- Tsinghua University
- Beijing 100084
| |
Collapse
|
34
|
Martín-Lara MÁ, Calero de Hoces M, Ronda Gálvez A, Pérez Muñoz A, Trujillo Miranda MC. Assessment of the removal mechanism of hexavalent chromium from aqueous solutions by olive stone. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2680-2688. [PMID: 27232404 DOI: 10.2166/wst.2016.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objectives of this study were to study the removal mechanism of Cr(VI) by natural olive stone (OS) and to present a sequential-batch process for the removal of total chromium (original Cr(VI) and Cr(III) derived from reduction of Cr(VI) during biosorption at acidic conditions). First, experiments were conducted varying pH from 1 to 4, and showed that a combined effect of biosorption and reduction is involved in the Cr(VI) removal. Then, X-ray photoelectron spectroscopy and desorption tests were employed to verify the oxidation state of the chromium bound to OS and to elucidate the removal mechanism of Cr(VI) by this material. The goal of these tests was to confirm that Cr(III) is the species mainly absorbed by OS. Finally, the possibility of total chromium removal by biosorption in a sequential-batch process was analyzed. In the first stage, 96.38% of Cr(VI) is removed by OS and reduced to Cr(III). In the second stage, approximately 31% of the total Cr concentration was removed. However, the Cr(III) released in the first stage is not completely removed, and it could suggest that the Cr(III) could be in a hydrated compound or a complex, which could be more difficult to remove under these conditions.
Collapse
Affiliation(s)
| | | | - Alicia Ronda Gálvez
- Department of Chemical Engineering, University of Granada, Granada 18071, Spain E-mail:
| | - Antonio Pérez Muñoz
- Department of Chemical Engineering, University of Granada, Granada 18071, Spain E-mail:
| | | |
Collapse
|
35
|
Rangabhashiyam S, Selvaraju N. Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.06.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Bertoni FA, Medeot AC, González JC, Sala LF, Bellú SE. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. J Colloid Interface Sci 2015; 446:122-32. [DOI: 10.1016/j.jcis.2015.01.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
37
|
Zhou X, Nie J, Xu J, Du B. Thermo-sensitive ionic microgels via post quaternization cross-linking: fabrication, property, and potential application. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3596-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Boraphech P, Thiravetyan P. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:269-277. [PMID: 25664363 DOI: 10.1016/j.jhazmat.2014.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.
Collapse
|
39
|
Rangabhashiyam S, Selvaraju N. Evaluation of the biosorption potential of a novel Caryota urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.09.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
|
41
|
Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.02.054] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Liu Z, Liu Y. Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2014.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Raulinoa GSC, Vidal CB, Lima ACA, Melo DQ, Oliveira JT, Nascimento RF. Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column. ENVIRONMENTAL TECHNOLOGY 2014; 35:1711-1720. [PMID: 24956762 DOI: 10.1080/09593330.2014.880747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work investigates copper, nickel and zinc ion biosorption in single- and multi-component systems in a fixed-bed column using green coconut shells (CS). Approximately 85% of biosorbents are in a particle size ranging from 0.25 to 2 mm. Operational parameters selected include a flow rate of 200 mL min-1 and a bed height of 100 cm, which were selected for a shorter execution time and good adsorption capacity. Empty-bed contact time and Thomas models were applied, showing a good fit with the experimental data. The column adsorption capacity increased after the green CS powder was treated in a column with NaOH at a concentration of 0.1 mol L-1. The highest values of adsorption capacities founded were 0.69, 0.45 and 0.39 mmol L-1 for Cu(II), Ni(II) and Zn(Il), respectively, using green CS treated inside a column with NaOH of 0.1 M. The pH and chemical oxygen demand were monitored in the treatment solution and indicated that the adjustment of these parameters is necessary before disposal of these solutions. A study of desorption using an acid solution was carried out for recovery of metal ions.
Collapse
|
44
|
New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0086-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Xi Z, Chen B. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. J Environ Sci (China) 2014; 26:737-748. [PMID: 25079403 DOI: 10.1016/s1001-0742(13)60501-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 06/03/2023]
Abstract
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater.
Collapse
Affiliation(s)
- Zemin Xi
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Adebayo MA, Prola LDT, Lima EC, Puchana-Rosero MJ, Cataluña R, Saucier C, Umpierres CS, Vaghetti JCP, da Silva LG, Ruggiero R. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:43-50. [PMID: 24462989 DOI: 10.1016/j.jhazmat.2014.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 05/25/2023]
Abstract
A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents.
Collapse
Affiliation(s)
- Matthew A Adebayo
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil; Department of Chemical Sciences, Ajayi Crowther University, PMB 1066 Oyo, Oyo State, Nigeria
| | - Lizie D T Prola
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil.
| | - M J Puchana-Rosero
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Renato Cataluña
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Caroline Saucier
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Cibele S Umpierres
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Julio C P Vaghetti
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Leandro G da Silva
- Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D-Campus Santa Mônica, 38400-902 Uberlândia, MG, Brazil
| | - Reinaldo Ruggiero
- Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D-Campus Santa Mônica, 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
47
|
Rangabhashiyam S, Suganya E, Selvaraju N, Varghese LA. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World J Microbiol Biotechnol 2014; 30:1669-89. [DOI: 10.1007/s11274-014-1599-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
48
|
Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QY, Li Q, Nguyen TV. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. BIORESOURCE TECHNOLOGY 2013; 148:574-85. [PMID: 24045220 DOI: 10.1016/j.biortech.2013.08.124] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 05/21/2023]
Abstract
This critical review discusses the potential use of agricultural waste based biosorbents (AWBs) for sequestering heavy metals in terms of their adsorption capacities, binding mechanisms, operating factors and pretreatment methods. The literature survey indicates that AWBs have shown equal or even greater adsorption capacities compared to conventional adsorbents. Thanks to modern molecular biotechnologies, the roles of functional groups in biosorption process are better understood. Of process factors, pH appears to be the most influential. In most cases, chemical pretreatments bring about an obvious improvement in metal uptake capacity. However, there are still several gaps, which require further investigation, such as (i) searching for novel, multi-function AWBs, (ii) developing cost-effective modification methods and (iii) assessing AWBs under multi-metal and real wastewater systems. Once these challenges are settled, the replacement of traditional adsorbents by AWBs in decontaminating heavy metals from wastewater can be expected in the future.
Collapse
Affiliation(s)
- T A H Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yu W, Zhang L, Wang H, Chai L. Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). JOURNAL OF HAZARDOUS MATERIALS 2013; 260:789-795. [PMID: 23856308 DOI: 10.1016/j.jhazmat.2013.06.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
Poly(m-phenylenediamine) (PmPD) with different oxidation state was successfully synthesized by the improved chemically oxidative polymerization. The function of oxidation state on Cr(VI) adsorption was systematically examined through adsorption experiments. Results showed that the Cr(VI) adsorptivity of all PmPD increased with decreasing the initial pH. When the oxidation state of PmPD was dropped, the equilibrium time for Cr(VI) adsorption was obviously shortened and its Cr(VI) removal and adsorption selectivity were profoundly obviously increased. Typically, PmPD with the lowest oxidation state in this research possesses the highest Cr(VI) removal of 500 mg g(-1). Moreover, PmPD with lower oxidation state displays a potentially superior prospect in Cr(VI) treatment through preliminary experiments on 5 cycles of adsorption, column adsorption and practical wastewater treatment. The possible adsorption mechanism was discussed mainly according to characterizations (FTIR, XPS) and experiments, which together suggests that the Cr(VI) adsorption most possibly involve redox reaction, chelation and doping adsorption.
Collapse
Affiliation(s)
- Wanting Yu
- Department of Environmental Engineering, School of Metallurgical and Environment, Central South University, Changsha 410017, China
| | | | | | | |
Collapse
|
50
|
Chen P, Cao L, Wang G, Wang J. Synthesis of cross-linked homopolymers and copolymers of 1-vinylimidazole in supercritical carbon dioxide for removal of Cr(VI) from aqueous solution. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pei Chen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region; Xinjiang University; Urumqi 830046 China
| | - Liqin Cao
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region; Xinjiang University; Urumqi 830046 China
| | - Gang Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region; Xinjiang University; Urumqi 830046 China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region; Xinjiang University; Urumqi 830046 China
| |
Collapse
|