1
|
Wardak C, Morawska K, Pietrzak K. New Materials Used for the Development of Anion-Selective Electrodes-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5779. [PMID: 37687472 PMCID: PMC10488487 DOI: 10.3390/ma16175779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Ion-selective electrodes are a popular analytical tool useful in the analysis of cations and anions in environmental, industrial and clinical samples. This paper presents an overview of new materials used for the preparation of anion-sensitive ion-selective electrodes during the last five years. Design variants of anion-sensitive electrodes, their advantages and disadvantages as well as research methods used to assess their parameters and analytical usefulness are presented. The work is divided into chapters according to the type of ion to which the electrode is selective. Characteristics of new ionophores used as the electroactive component of ion-sensitive membranes and other materials used to achieve improvement of sensor performance (e.g., nanomaterials, composite and hybrid materials) are presented. Analytical parameters of the electrodes presented in the paper are collected in tables, which allows for easy comparison of different variants of electrodes sensitive to the same ion.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Sari SR, Tominaga M. Progress and current trends in the electrochemical determination of phosphate ions for environmental and biological monitoring applications. ANAL SCI 2022; 39:629-642. [PMID: 36464720 DOI: 10.1007/s44211-022-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The determination of phosphate ions in biological testing is critical for environmental safety. A reliable and accurate method is required to measure the true phosphate ion concentrations; in this regard, the electrochemical method is preferable because of its simple operation, fast response, and high sensitivity. By compiling existing electroanalytical techniques, researchers can compare the advantages and disadvantages of each method. This review examines the progress and recent advances in electrochemical sensing strategies adapted for the determination of phosphate ions in the environmental and during biological monitoring. We first discuss the history of phosphorus and the development of methods to detect phosphates. The recognition elements of phosphate ion sensors for environmental applications include metal-based, nanomaterial-based, carbon-based, and enzymatic electrodes. Phosphate determination in biological samples, such as blood serum, drugs, and other biological fluids, such as urine and saliva, as well as phosphate esters, is also discussed. The final part of our review addresses the current challenges that phosphate sensing technology faces and illustrates future opportunities for more reliable phosphate detection.
Collapse
Affiliation(s)
- Shaimah Rinda Sari
- Graduate School of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Masato Tominaga
- Graduate School of Science and Engineering, Saga University, Saga, 840-8502, Japan.
| |
Collapse
|
4
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
5
|
SATOH H, MIYAZAKI Y, TANIUCHI S, OSHIKI M, RATHNAYAKE RMLD, TAKAHASHI M, OKABE S. Improvement of a Phosphate Ion-selective Microsensor Using Bis(dibromophenylstannyl)methane as a Carrier. ANAL SCI 2017; 33:825-830. [DOI: 10.2116/analsci.33.825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hisashi SATOH
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Yuji MIYAZAKI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Shou TANIUCHI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Mamoru OSHIKI
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | | | - Masahiro TAKAHASHI
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Satoshi OKABE
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| |
Collapse
|