1
|
Chen X, Feng R, Du Q, Mauchline TH, Clark IM, Lu Y, Liu L. Identification and genomic analysis of a thermophilic bacterial strain that reduces ammonia loss from composting. Microbiol Spectr 2024; 12:e0076324. [PMID: 39162261 PMCID: PMC11448220 DOI: 10.1128/spectrum.00763-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Ammonia loss is the most severe during the high-temperature stage (>50°C) of aerobic composting. Regulating ammonia volatilization during this period via thermophilic microbes can significantly improve the nitrogen content of compost and reduce air pollution due to ammonia loss. In this study, an ammonia-assimilating bacterial strain named LL-8 was screened out as having the strongest ammonia nitrogen conversion rate (32.7%) at high temperatures (50°C); it is able to significantly reduce 42.9% ammonia volatile loss in chicken manure composting when applied at a high-temperature stage. Phylogenetic analysis revealed that LL-8 was highly similar (>98%) with Priestia aryabhattai B8W22T and identified as Priestia aryabhatta. Genomic analyses indicated that the complete genome of LL-8 comprised 5,060,316 base pairs with a GC content of 32.7% and encoded 5,346 genes. Genes, such as gudB, rocG, glnA, gltA, and gltB, that enable bacteria to assimilate ammonium nitrogen were annotated in the LL-8 genome based on the comparison to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results implied that the application of thermophilic ammonia-assimilating strain P. aryabhatta LL-8 would be a promising solution to reduce ammonia loss and mitigate air pollution of aerobic composting.IMPORTANCEAerobic composting is one of the essential ways to recycle organic waste, but its ammonia volatilization is severe and results in significant nitrogen loss, especially during the high-temperature period, which is also harmful to the environment. The application of thermophilic bacteria that can use ammonia as a nitrogen source at high temperatures is helpful to reduce the ammonia volatilization loss of composting. In this study, we screened and identified a bacteria strain called LL-8 with high temperature (50°C) resistance and strong ammonia-assimilating ability. It also revealed significant effects on decreasing ammonia volatile loss in composting. The whole-genome analysis revealed that LL-8 could utilize ammonium nitrogen by assimilation to decrease ammonia volatilization. Our work provides a theoretical basis for the application of this functional bacteria in aerobic composting to control nitrogen loss from ammonia volatilization.
Collapse
Affiliation(s)
- Xuejuan Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Rong Feng
- Lijiang Culture and Tourism College, Lijiang, Yunnan, China
| | - Qianhui Du
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Tim H. Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Ian M. Clark
- Sustainable Soils and Crops, Rothamsted Research, Hertfordshire, United Kingdom
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Li Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Sun Y, Sun S, Pei F, Zhang C, Cao X, Kang J, Wu Z, Ling H, Ge J. Response characteristics of Flax retting liquid addition during chicken manure composting: Focusing on core bacteria in organic carbon mineralization and humification. BIORESOURCE TECHNOLOGY 2023; 381:129112. [PMID: 37137452 DOI: 10.1016/j.biortech.2023.129112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
To explore the applicability of flax retting liquid (FRL) addition, the physicochemical properties, microbial community structure and function, carbon conversion and humus (HS) formation were assessed during chicken manure (CM) aerobic composting. Compared with the control group, the addition of FRL increased the temperature at thermophilic phase, while the microbial mass carbon content (MBC) in SCF and FRH groups raised to 96.1±0.25 g/Kg and 93.33±0.27 g/Kg, respectively. Similarly, FRL also improved the concent of humic acid (HA) to 38.44±0.85 g/Kg, 33.06±0.8 g/Kg, respcetively. However, fulvic acid (FA) decreased to 30.02±0.55g/Kg, 31.4±0.43 g/Kg, respectively and further reduced CO2 emissions. FRL influenced the relative abundance of Firmicutes at thermophilic phase and Ornithinimicrobium at maturity phase. Additionally, FRL strengthen the association among flora and reduce the number of bacteria, which was negative correlated with HA and positive with CO2 during composting. These findings offer powerful technological support for improving agricultural waste recycling.
Collapse
Affiliation(s)
- Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
3
|
Wang H, Shao T, Zhou Y, Long X, Rengel Z. The effect of biochar prepared at different pyrolysis temperatures on microbially driven conversion and retention of nitrogen during composting. Heliyon 2023; 9:e13698. [PMID: 36873514 PMCID: PMC9976328 DOI: 10.1016/j.heliyon.2023.e13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Aerobic composting is one of the most economical ways to produce organic fertilizer from agricultural wastes. In this research, we independently developed a simple composting simulation reactor. The effects of biochar pyrolysised at different pyrolysis temperatures (B1-450 °C; B2-550 °C; and B3-650 °C) on nitrogen conversion (Total nitrogen (TN), ammonium nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N), cumulative amount of ammonia (CEA) and nitrous oxide (CEN) emission, nitrogen loss rate (NLR), etc.) and functional microbial community (cbbL, cbbM and nifH) structure in the composting system were studied. Results showed that the addition of biochar significantly improved the efficiency of composting, increased the NO3 --N concentration and reduced the NLR (%) in the composting system (B3 (31.4 ± 2.73)<B2=B1 (41.7 ± 3.29)<B0 (54.5 ± 3.34), p ≤ 0.05), while the loss rate of nitrogen positively correlated with compost pH. Denitrifying bacterial genera such as Pseudomonas, Alcaligenes, Paracoccus, Bacillus, Citrobacter, Mesorhizobium, Thiobacillus and Rhodococcus in this study was an important reason for nitrogen loss during composting, and the abundance of autotrophic microorganisms (such as Sulfuritalea, Hydrogenophaga, Thiobacillus, Thiomonas and Candidatus_Thioglobus) in treatments with biochar (B1, B2 and B3) were higher than that in B0. Besides, the community structure in the treatments B2 and B3 was similar at the end of composting and clearly distinguished from that in B1. Moreover, the five functions predicted by OTUs in this study with the highest proportions were chemoheterotrophy, nitrate reduction, fermentation, aerobic chemoheterotrophy and nitrogen respiration. The study provided a theoretical basis for the application of biochar to improve the compost-related processes.
Collapse
Affiliation(s)
- Haihou Wang
- Suzhou Academy of Agricultural Sciences, Institution of Agricultural Sciences Taihu Lake District, Suzhou, 215155, China.,National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou, 215131, China
| | - Tianyun Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujie Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia
| |
Collapse
|
4
|
Shou Z, Yuan H, Shen Y, Liang J, Zhu N, Gu L. Mitigating inhibition of undissociated volatile fatty acids (VFAs) for enhanced sludge-rice bran composting with ferric nitrate amendment. BIORESOURCE TECHNOLOGY 2017; 244:672-678. [PMID: 28818795 DOI: 10.1016/j.biortech.2017.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effect of ferric nitrate on mitigating the inhibition of volatile fatty acids (VFAs) during the initial phase of sewage sludge composting amended with rice bran. During the 34-day lab-scale composting, the supplementation of ferric nitrate enhanced the degradation of VFAs by up to 3 times as compared to the control. The organic matters loss (OML) rate in the treatment reactor was almost doubled with supplementation of ferric nitrate as compared to the control reactor during the initial phase. Eventually the treatment reactor achieved a 39.0% OML by the end of composting, which was 22% higher than the control. Ferric nitration addition mitigated the inhibition of VFAs by stimulating denitrification which consumed protons and VFAs. Ferric nitrate addition also decreased the electrical conductivity by 23% in the final compost product, reducing the possibility of phytotoxicity issue upon soil application. In summary, the results demonstrated that ferric nitrate addition could be an effective strategy for enhanced sludge composting.
Collapse
Affiliation(s)
- Zongqi Shou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
5
|
Jiang-Ming Z. Effect of turning frequency on co-composting pig manure and fungus residue. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:313-321. [PMID: 27650130 DOI: 10.1080/10962247.2016.1232666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. IMPLICATIONS Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue, so as to capture an operational technique suitable for the effective co-composting pig manure and edible fungi residue for a large-scale composting plant.
Collapse
Affiliation(s)
- Zhou Jiang-Ming
- a Agricultural Technique Popularization Centre of Jiangshan City , Jiangshan , Zhejiang , China
| |
Collapse
|
6
|
Chen W, Liao X, Wu Y, Liang JB, Mi J, Huang J, Zhang H, Wu Y, Qiao Z, Li X, Wang Y. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:506-515. [PMID: 28117129 DOI: 10.1016/j.wasman.2017.01.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 05/22/2023]
Abstract
Biochar, because of its unique physiochemical properties and sorption capacity, may be an ideal amendment in reducing gaseous emissions during composting process but there has been little information on the potential effects of different types of biochar on undesired gaseous emissions. The objective of this study was to examine the ability and mechanism of different types of biochar, as co-substrate, in mitigating gaseous emission from composting of layer hen manure. The study was conducted in small-scale laboratory composters with the addition of 10% of one of the following biochars: cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar. The results showed that the cumulative NH3 production was significantly reduced by 24.8±2.9, 9.2±1.3, 20.1±2.6, 14.2±1.6, 11.8±1.7% (corrected for initial total N) in the cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar treatments, respectively, compared to the control. Total CH4 emissions was significantly reduced by 26.1±2.3, 15.5±2.1, 22.4±3.1, 17.1±2.1% (corrected for the initial total carbon) for cornstalk biochar, bamboo biochar, woody biochar and coir biochar treatments than the control. Moreover, addition of cornstalk biochar increased the temperature and NO3--N concentration and decreased the pH, NH4+-N and organic matter content throughout the composting process. The results suggested that total volatilization of NH3 and CH4 in cornstalk biochar treatment was lower than the other treatments; which could be due to (i) decrease of pH and higher nitrification, (ii) high sorption capacity for gases and their precursors, such as ammonium nitrogen from composting mixtures, because of the higher surface area, pore volumes, total acidic functional groups and CEC of cornstalk biochar.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China.
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China
| | - Juan Boo Liang
- Institute of Tropical Agriculture and Food Security, University Putra Malaysia, 43400 Serdang, Malaysia
| | - Jiandui Mi
- College of Animal Science, South China Agricultural University, Guangzhou, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China
| | - Jinjie Huang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yu Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhifen Qiao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xi Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Jiang T, Ma X, Yang J, Tang Q, Yi Z, Chen M, Li G. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting. BIORESOURCE TECHNOLOGY 2016; 217:219-226. [PMID: 26927235 DOI: 10.1016/j.biortech.2016.02.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
This study compared 4 different struvite crystallization process (SCP) during the composting of pig feces. Four combinations of magnesium and phosphate salts (H3PO4+MgO (PMO), KH2PO4+MgSO4 (KPM), Ca(H2PO4)2+MgSO4 (CaPM), H3PO4+MgSO4 (PMS)) were assessed and were also compared to a control group (CK) without additives. The magnesium and phosphate salts were all supplemented at a level equivalent to 15% of the initial nitrogen content on a molar basis. The SCP significantly reduced NH3 emission by 50.7-81.8%, but not the N2O. Although PMS group had the lowest NH3 emission rate, the PMO treatment had the highest struvite content in the end product. The addition of sulphate decreased CH4 emission by 60.8-74.6%. The CaPM treatment significantly decreased NH3 (59.2%) and CH4 (64.9%) emission and yielded compost that was completely matured. Due to its effective performance and low cost, the CaPM was suggested to be used in practice.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemistry, Leshan Normal University, Leshan 614004, China; College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, China
| | - Xuguang Ma
- College of Chemistry, Leshan Normal University, Leshan 614004, China
| | - Juan Yang
- College of Chemistry, Leshan Normal University, Leshan 614004, China
| | - Qiong Tang
- College of Chemistry, Leshan Normal University, Leshan 614004, China
| | - Zhigang Yi
- College of Chemistry, Leshan Normal University, Leshan 614004, China
| | - Maoxia Chen
- College of Chemistry, Leshan Normal University, Leshan 614004, China
| | - Guoxue Li
- College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|