1
|
Banerjee A, Singh S, Bhaskar T, Venkata Mohan S, Ghosh D. Anaerobic conversion of de-oiled yeast biomass fractionation waste to biomethane and biohydrogen for resource efficiency in biorefineries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125337. [PMID: 40245733 DOI: 10.1016/j.jenvman.2025.125337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
High-value intracellular bio-compounds are extracted from microbial biomass through cell fractionation processes, which generate discharge streams. These discharges are rich in organic carbon and nitrogen that are derived from the soluble and insoluble protein and carbohydrate polymers. The present study investigated the anaerobic conversion of such a tertiary waste stream generated during the production of glucan-chitin complex through fractionation of de-oiled yeast biomass (a type of spent microbial biomass, which is the solid leftover residue of yeast lipid production process). Fed-batch anaerobic processes of methanogenesis and acidogenesis were investigated for the generated discharge streams. An average COD removal of 47 % with 294 and 323.51 mg VFA/g COD, with a maximum yield of 133.61 mL CH4/g COD and 53.45 mL H2/g COD in methanogenic and acidogenic fermentation was achieved. Considering CH4 production and COD removal, methanogenesis performed better, while in terms of VFA production and subsequent COD removal, acidogenesis was suitable. The investigation indicated the relevance of anaerobic processes for the conversion of de-oiled biomass fractionation discharge streams and suggested a route for integrating aerobic downstream waste to anaerobic fermentation systems, subsequently eliminating a greywater footprint of 5233.04 g/L and opening a prospect for an industrial symbiosis system. The findings highlighted the potential of these systems in process integration for fermentation-based process chains to achieve circularity and resource efficiency in production.
Collapse
Affiliation(s)
- Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Shalini Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, Telangana, India.
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - S Venkata Mohan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, Telangana, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, Maharashtra, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum (CSIR-IIP), Mohkampur, Dehradun, 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
2
|
Xie Y, Gu L, Wang Y, Liu W, Huo Y. Comparative effects of ammonium nitrogen on perchlorate degradation performance under heterotrophic condition with different carbon sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135293. [PMID: 39094307 DOI: 10.1016/j.jhazmat.2024.135293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Perchlorate (ClO4-) mainly exists in the form of ammonium perchlorate in industrial production. However, the degradation mechanisms of different concentrations of ammonium nitrogen (NH4+-N) and ClO4- mixed pollutants in the environment are not well understood. This study aims to explore the potential of different types of carbon sources for ClO4- and NH4+-N biodegradation. Experimental results showed that the concentration and type of carbon sources are decisive to simultaneous removal of NH4+-N and ClO4-. Under condition of C(COD)/C(ClO4-) ratio of 21.15 ± 4.40, the simultaneously removal efficiency of ClO4- and NH4+-N in acetate (Ace) was relatively higher than that in methanol (Met). C(NH4+-N)/C(ClO4-) ratio of 9.66 ± 0.51 and C(COD)/C(ClO4-) ratio of 2.51 ± 0.87 promoted ClO4- reduction in glucose-C (Glu-C). However, high concentration of Glu could cause pH decrease (from 7.57 to 4.59), thereby inhibiting ClO4- reduction. High-throughput sequencing results indicated that Proteobacteria and Bacteroidetes have made a major contribution to the simultaneous removal of NH4+-N and ClO4-. They are two representative bacterial phyla for participating in both ClO4- reduction and denitrification. Notably, the abundance of main ClO4- degrading bacteria (such as Proteobacteria, Chloroflexi, and Firmicutes) significantly increased by 528.57 % in Glu-C. It can be inferred that the concentration of carbon source and NH4+-N were the most important factors determining the removal efficiency of ClO4- by influencing changes in the core microbial community. This study will provide new techniques and mechanistic insights for the simultaneous removal of mixed ClO4- and nitrogen pollutants, which can also provide theoretical support for innovation in future biological treatment processes.
Collapse
Affiliation(s)
- Yuxuan Xie
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Liang Gu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Wuzixiao Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin jianzhu University, Changchun 130118, People's Republic of China.
| | - Yang Huo
- Research Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, People's Republic of China; Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
| |
Collapse
|
3
|
Xiao X, Hu H, Meng X, Huang Z, Feng Y, Gao Q, Ruan W. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. BIORESOURCE TECHNOLOGY 2024; 399:130576. [PMID: 38479625 DOI: 10.1016/j.biortech.2024.130576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
In this study, a pilot-scale anaerobic membrane bioreactor (AnMBR) was developed to continuously produce volatile fatty acids (VFAs) from kitchen waste slurry under an alkaline condition. The alkaline fermentation effectively suppressed methanogenesis, thus achieving high VFAs production of 60.3 g/L. Acetic acid, propionic acid, and butyric acid accounted for over 95.0 % of the total VFAs. The VFAs yield, productivity, and chemical oxygen demand (COD) recovery efficiency reached 0.5 g/g-CODinfluent, 6.0 kg/m3/d, and 62.8 %, respectively. Moreover, the CODVFAs/CODeffluent ratio exceeded 96.0 %, and the CODVFAs/NH3-N ratio through ammonia distillation reached up to 192.5. The microbial community was reshaped during the alkaline fermentation with increasing salinity. The membrane fouling of the AnMBR was alleviated by chemical cleaning and sludge discharge, and membrane modules displayed a sustained filtration performance. In conclusion, this study demonstrated that high-quality VFAs could be efficiently produced from kitchen waste slurry using an AnMBR process via alkaline fermentation.
Collapse
Affiliation(s)
- Xiaolan Xiao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongmei Hu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhenxing Huang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yongrui Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Gao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenquan Ruan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
4
|
Sayin A, Soleimanifar M, Rosenthal A, Jezek R, de Falco G, Ramalingam K, Fillos J. Evaluation of aircraft deicing fluid as an external carbon source for denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171795. [PMID: 38508269 DOI: 10.1016/j.scitotenv.2024.171795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Water resource recovery facilities (WRRFs) performing biological nitrogen removal (BNR) often require external carbon sources for meeting nitrogen discharge permit limits. This brings an additional financial burden to the facilities considering the continuous need of these external carbon sources. This paper evaluates the utilization of airport stormwater, which in the winter season is rich in aircraft deicing fluid (ADF) as an alternative external carbon source. Denitrification and nitrification bench scale experiments were performed to assess the efficacy of external carbon sources to remove nitrogen in WRRFs. Experimental results showed that ADFs achieve denitrification rates of 0.064-0.066 d-1, higher than what achieved by a commercial carbon source, MicroC 2000A, with corresponding value of 0.058 d-1 at low temperatures, as low as 13 °C, which is considered a worst-case scenario for nitrogen removal efficiency. Furthermore, no inhibition to nitrification associated with the ADFs was observed. Subsequently a dynamic modeling study was conducted to assess the performance of ADFs as external carbon sources for denitrification and compared them to the conventional source that was being used in a full-scale BNR process. Results from the dynamic modeling study revealed that if 40 % of the spent-ADF at LaGuardia airport, New York City, could be collected with the stormwater and conveyed to a WRRF via the sewer collection system, an approximate reduction of 30 % of the commercial external carbon source could be accomplished by repurposing a waste product. This study contributes to the potential of ADF as a denitrification aid and an alternative for commercially available carbon sources with comparable nitrogen removal efficiencies.
Collapse
Affiliation(s)
- Aykut Sayin
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
| | - Maedeh Soleimanifar
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| | - Alex Rosenthal
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| | - Roland Jezek
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| | - Giacomo de Falco
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
| | - Krish Ramalingam
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| | - John Fillos
- Department of Civil Engineering, City College of New York, New York, NY 10031, United States
| |
Collapse
|
5
|
Cheng L, Gao N, Quan C. Fermentation broth of food waste: A sustainable electron donor for perchlorate biodegradation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:165-172. [PMID: 37269580 DOI: 10.1016/j.wasman.2023.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Microbial reduction has been considered an effective way to remove perchlorate (ClO4-), during which, additional electron donors and carbon sources are required. This work aims to study the potential of fermentation broth of food waste (FBFW) serving as an electron donor for ClO4- biodegradation, and further investigates the variance of the microbial community. The results showed that FBFW without anaerobic inoculum at 96 h (F-96) exhibited the highest ClO4- removal rate of 127.09 mg/L/d, attributed to higher acetate and lower ammonium contents in the F-96 system. In a 5 L continuous stirred-tank reactor (CSTR), with a 217.39 g/m3·d ClO4- loading rate, 100% removal efficiency of ClO4- was achieved, indicating that the application of FBFW in the CSTR showed satisfactory performance for ClO4- degradation. Moreover, the microbial community analysis revealed that Proteobacteria and Dechloromonas contributed positively to ClO4- degradation. Therefore, this study provided a novel approach for the recovery and utilization of food waste, by employing it as a cost-effective electron donor for ClO4- biodegradation.
Collapse
Affiliation(s)
- Lijie Cheng
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningbo Gao
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Shannxi Coal and Chemical Technology Institute Co., Ltd, Xi'an 710000, China.
| | - Cui Quan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Zhou M, Han Y, Zhuo Y, Dai Y, Yu F, Feng H, Peng D. Effect of thermal hydrolyzed sludge filtrate as an external carbon source on biological nutrient removal performance of A 2/O system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117425. [PMID: 36739777 DOI: 10.1016/j.jenvman.2023.117425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Thermal hydrolyzed sludge filtrate (THSF) rich in biodegradable organics could be a promising external carbon source for biological nutrient removal (BNR). The use of THSF can effectively reduce wastewater treatment plants operating costs and recover bioresources and bioenergy from the waste activated sludge. In this study, the effect of THSF on the BNR process was investigated using a lab-scale anaerobic/anoxic/oxic (A2/O) system. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 74.26 ± 3.36% and 92.20 ± 3.13% at a 0.3% dosing ratio were achieved, respectively. Moreover, 20.42% of the chemical oxygen demand (COD) contained in THSF contributed to denitrification, enhancing nitrogen removal efficiency from 55.30 to 74.26%. However, the effluent COD increased by approximately 36.80%, due to 18.39% of the COD contained in THSF discharged with effluent. In addition, the maximum denitrification rate was approximately 16.01 mg N g VSS-1 h-1, while the nitrification rate was not significantly affected by THSF. Nitrosomonas, a common chemoautotrophic nitrifier, was not detected after the introduction of THSF. The aerobic denitrifier Rubellimicrobium was stimulated, and its relative abundance increased from 0.16 to 3.03%. Moreover, the relative abundance of Dechloromonas was 3.93%, indicating that the denitrifying phosphorus removal process was enhanced. This study proposes an engineering application route of THSF, and the chemical phosphate removal pretreatment might be a means to suppress the phosphate recirculation.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yang Dai
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Fen Yu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Hao Feng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
8
|
Ahmed SM, Rind S, Rani K. Systematic review: External carbon source for biological denitrification for wastewater. Biotechnol Bioeng 2023; 120:642-658. [PMID: 36420631 DOI: 10.1002/bit.28293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Nitrogen mitigation is serious environmental issue around the globe. Several methods for wastewater treatment have been introduced, but biological denitrification has been recommended, particularly with addition of the best external carbon source. The key sites of denitrification are wetlands; it can be carried out with different methods. To highlight the aforementioned technology, this paper deals to review the literature to evaluate biological denitrification and to demonstrate cost effective external carbon sources. The results of systematic review disclose the denitrification process and addition of different external carbon sources. The online literature exploration was accomplished using the most well-known databases, that is, science direct and the web of science database, resulting 625 review articles and 3084 research articles, published in peer-reviewed journals between 2015 and 2021 were identified in first process. After doing an in-depth literature survey and exclusion criteria, we started to shape the review from selected review and research articles. A number of studies confirmed that both nitrification and denitrification are significant for biological treatment of wastewater. The studies proved that the carbon source is the main contributor and is a booster for the denitrification. Based on the literature reviewed it is concluded that biological denitrification with addition of external carbon source is cost effective and best option in nitrogen mitigation in a changing world. Our study recommends textile waste for recovery of carbon source.
Collapse
Affiliation(s)
- Sanjrani Manzoor Ahmed
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.,HANDS-Institute of Development Studies, Karachi, Pakistan
| | - Saeeda Rind
- Department of Chemistry, University of Sindh Jamshoro, Jamshoro, Pakistan
| | - Keenjhar Rani
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
9
|
Yuan L, Tan L, Shen Z, Zhou Y, He X, Chen X. Enhanced denitrification of dispersed swine wastewater using Ca(OH) 2-pretreated rice straw as a solid carbon source. CHEMOSPHERE 2022; 305:135316. [PMID: 35709845 DOI: 10.1016/j.chemosphere.2022.135316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In a pilot-scale packed bed reactor, the denitrification performance and microbial community structure of the dispersed swine wastewater treatment using calcium hydroxide (Ca(OH)2) pretreated rice straw as a carbon source were investigated. In a Ca(OH)2-pretreated rice straw supported denitrification system (Ca(OH)2-RS), the removal efficiency of NO3--N was 96.39% at an influent NO3--N load of 0.04 kg/(m3•d). Meanwhile, there was no obvious accumulation of NO2--N or chemical oxygen demand (COD) in the effluent of Ca(OH)2-RS. The contents of soluble microbial byproduct-like substances and tryptophan-like substances in the effluent of Ca(OH)2-RS were reduced by 46.2% and 43.4%, respectively, compared with the influent. Overall, the Ca(OH)2-pretreated rice straw system had a strong resistance to fluctuations in water quality conditions, such as influent NO3--N and COD concentrations. According to the microbial assay results, the Ca(OH)2 pretreatment enriched more denitrifying bacteria. Among them, Proteobacteria (42.33%) and Bacteroidetes (35.28%) were the dominant bacteria. Moreover, the main denitrifying functional bacteria, generanorank_f_Saprospiraceae (13.32%), norank_f_Porphyromonadaceae (4.22%), and Flavobacterium (3.25%), were enriched in Ca(OH)2-RS. This suggested that using Ca(OH)2-pretreated rice straw as a carbon source was a stable and efficient technology to enhance the denitrification performance of dispersed swine wastewater.
Collapse
Affiliation(s)
- Lianhua Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Leilei Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xuemin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730000, PR China
| |
Collapse
|
10
|
Zubrowska-Sudol M, Walczak J, Piechota G. Disintegration of waste sludge as an element bio-circular economy in waste water treatment plant towards carbon recovery for biological nutrient removal. BIORESOURCE TECHNOLOGY 2022; 360:127622. [PMID: 35850396 DOI: 10.1016/j.biortech.2022.127622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The goal of the study was to evaluate the possibility of use of disintegrated excess sludge to enhance combined biological nutrient removal from wastewater. In the experiment lasting 295 days four runs were performed. Effectiveness of contaminants removal in sequencing batch reactor without and with applying sludge subjected previously to hydrodynamic disintegration at three energy density (ƐL) levels was analysed. It was shown that ƐL is a crucial parameters responsible for the characteristics of disintegrated sludge applied as a carbon source for biological nutrient removal. Using sludge disintegrated at 70 and 210 kJ/L the increase in effectiveness of N and P removal was noted, averagely by 16.1 % (N removal) and 70.3 % (P removal) at ƐL = 70 kJ/L and by 17.8 % and 63.1 % at ƐL = 210 kJ/L. On the contrary, use of sludge disintegrated at ƐL = 280 kJ/L caused decline in N removal by averagely 12.8 %, what was a consequence of nitrification failure.
Collapse
Affiliation(s)
- Monika Zubrowska-Sudol
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Justyna Walczak
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| |
Collapse
|
11
|
Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114765. [PMID: 35202951 DOI: 10.1016/j.jenvman.2022.114765] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The high salinity of kitchen wastewater might have adverse effects on the production of short-chain fatty acids (SCFAs) in anaerobic fermentation. The effects and mechanisms of salinity on SCFA production in the anaerobic fermentation of kitchen wastewater were studied by varying the salt concentration, as follows: 0 g/L (S0), 2 g/L (S2), 6 g/L (S6), 10 g/L (S10), 15 g/L (S15), and 20 g/L (S20). Experimental results showed that hypersaline conditions (>10 g NaCl/L) accelerated the release of soluble proteins at the initial stage of anaerobic fermentation. They also significantly prohibited the hydrolysis and degradation of soluble proteins and carbohydrates. Compared with low salinity tests, the SCFA concentrations under hypersaline conditions (>10 g NaCl/L) only reached approximately 43% of the highest concentration on day 10, although the SCFA concentrations in all tests were very close on day 10 (14 g COD/L). High salinity delayed the production of n-butyric acid but did not change the composition of the total SCFAs. High salinity enriched Enterococcus and Bifidobacterium, the relative abundance levels of which reached 27.57% and 49.71%, respectively, before the depletion of substrate. High salinity showed a negative correlation with the relative abundance of the genera Clostridium_sensu_stricto_1, Prevotella and unclassified_f_Oscillospiraceae which are responsible for SCFA production. This study provided a theoretical basis for the fficient utilization of kitchen wastewater.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Linyu Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Mahmoud A, Hamza RA, Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151578. [PMID: 34774960 DOI: 10.1016/j.scitotenv.2021.151578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The addition of external carbon source for nitrogen removal from wastewater is an essential step in wastewater treatment. In this study, various external carbon sources from the fermentation of primary sludge (PS), thickened waste activated sludge (TWAS), food waste (FW), bakery processing & kitchen waste (BP + KW), fat, oil, & grease (FOG), and whey powder (WP) were successfully employed for wastewater denitrification. Methanol and acetate were also used as controls due to their common use as external carbon sources for wastewater denitrification. The denitrification performance and kinetics such as the specific denitrification rate (SDNR), denitrification potential (PDN), and the biomass yield were studied at a constant TVFA as COD/N ratio of 5 for all substrates. Complete denitrification was achieved with a NO3--N removal efficiency of 98-99%, and no NO2- accumulation was observed at the end of the experiments for all substrates. The results revealed that the liquid fermentation filtrates exhibited higher SDNRs than methanol and acetate. This indicates the high organic matter utilization efficiency and better denitrification ability of fermentation filtrates over conventional carbon sources. WP exhibited the highest SDNR of 17.6 mg NOx - N/g VSS/h, which is approximately four times that of methanol (4.6 mg NOx - N/g VSS/h). The other carbon sources had SDNRs two to three times higher than that of methanol. However, the fermentation filtrates exhibited higher biomass yields of 0.26-0.37 mg VSS/mg COD compared to methanol of 0.21 mg VSS/mg COD, which could lead to higher sludge handling costs. Moreover, methanol exhibited higher PDN of 0.25 g N/g COD compared to all the fermentation filtrates.
Collapse
Affiliation(s)
- Ali Mahmoud
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rania Ahmed Hamza
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
13
|
Cai Y, Yan Z, Ou Y, Peng B, Zhang L, Shao J, Lin Y, Zhang J. Effects of different carbon sources on the removal of ciprofloxacin and pollutants by activated sludge: Mechanism and biodegradation. J Environ Sci (China) 2022; 111:240-248. [PMID: 34949354 DOI: 10.1016/j.jes.2021.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/14/2023]
Abstract
This research investigated the effects of ciprofloxacin (CIP) (0.5, 5, and 20 mg/L) on SBR systems under different carbon source conditions. Microbial community abundance and structure were determined by quantitative PCR and high-throughput sequencing, respectively. The biodegradation production of CIP and possible degradation mechanism were also studied. Results showed that CIP had adverse effects on the nutrient removal from wastewater. Compared with sodium acetate, glucose could be more effectively used by microorganisms, thus eliminating the negative effects of CIP. Glucose stimulated the microbial abundance and increased the removal rate of CIP by 18%-24%. The mechanism research indicated that Proteobacteria and Acidobacteria had a high tolerance for CIP. With sodium acetate as a carbon source, the abundance of nitrite-oxidizing bacterial communities decreased under CIP, resulting in the accumulation of nitrite and nitrate. Rhodanobacter and Microbacterium played a major role in nitrification and denitrification when using sodium acetate and glucose as carbon sources. Dyella and Microbacterium played positive roles in the degradation process of CIP and eliminated the negative effect of CIP on SBR, which was consistent with the improved removal efficiency of pollutants.
Collapse
Affiliation(s)
- Yixiang Cai
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Zhiyong Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China.
| | - Yingjuan Ou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Boshang Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Jihai Shao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Yiqing Lin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha 410028, China.
| |
Collapse
|
14
|
Gui X, Li Z, Wang Z. Kitchen waste hydrolysate enhances sewage treatment efficiency with different biological process compared with glucose. BIORESOURCE TECHNOLOGY 2021; 341:125904. [PMID: 34523554 DOI: 10.1016/j.biortech.2021.125904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Insufficient carbon source is the primary factor that limits biological nitrogen and phosphorus removal during sewage treatment. This study investigates the feasibility and biological process of kitchen waste hydrolysate (KWH) replacing glucose to improve pollutant removal efficiency. It was found that using KWH as carbon source achieved better removal effect than glucose during sewage treatment. And more than 96% of total nitrogen (TN), total phosphorus (TP), and the chemical oxygen demand were removed after 48 h of acclimation. Nitrogen and phosphorus introduced by adding KHW had no negative effect on the effluent quality. Compared with glucose, KWH decreased the diversity of bacteria and significantly promoted the accumulation of acid-producing bacteria (Propionibacterium) and denitrifying bacteria (Rhodobacteraceae). Moreover, KWH significantly improved the relative abundance of the amo A, nap A, and nos Z genes. This result further indicated that KWH was beneficial for denitrification and was a favorable external carbon source.
Collapse
Affiliation(s)
- Xuwei Gui
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Zhengjiang Wang
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
15
|
Zhang F, Ma C, Huang X, Liu J, Lu L, Peng K, Li S. Research progress in solid carbon source-based denitrification technologies for different target water bodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146669. [PMID: 33839669 DOI: 10.1016/j.scitotenv.2021.146669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen pollution in water bodies is a serious environmental issue which is commonly treated by various methods such as heterotrophic denitrification. In particular, solid carbon source (SCS)-based denitrification has attracted widespread research interest due to its gradual carbon release, ease of management, and long-term operation. This paper reviews the types and properties of SCSs for different target water bodies. While both natural (wheat straw, wood chips, and fruit shells) and synthetic (polybutylene succinate, polycaprolactone, polylactic acid, and polyhydroxyalkanoates) SCSs are commonly used, it is observed that the denitrification performance of the synthetic sources is generally superior. SCSs have been used in the treatment of wastewater (including aquaculture wastewater), agricultural subsurface drainage, surface water, and groundwater; however, the key research aspects related to SCSs differ markedly based on the target waterbody. These key research aspects include nitrogen pollutant removal rate and byproduct accumulation (ordinary wastewater); water quality parameters and aquatic product yield (recirculating aquaculture systems); temperature and hydraulic retention time (agricultural subsurface drainage); the influence of dissolved oxygen (surface waters); and nitrate-nitrogen load, HRT, and carbon source dosage on denitrification rate (groundwater). It is concluded that SCS-based denitrification is a promising technique for the effective elimination of nitrate-nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Feifan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Chengjin Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Shiyang Li
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and chemical engineering, Shanghai University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
16
|
Abstract
With the development of economy and the improvement of people’s living standard, landfill leachate has been increasing year by year with the increase in municipal solid waste output. How to treat landfill leachate with high efficiency and low consumption has become a major problem, because of its high ammonia nitrogen and organic matter content, low carbon to nitrogen ratio and difficult degradation. In order to provide reference for future engineering application of landfill leachate treatment, this paper mainly reviews the biological treatment methods of landfill leachate, which focuses on the comparison of nitrogen removal processes combined with microorganisms, the biological nitrogen removal methods combined with ecology and the technology of direct application of microorganisms. In addition, the mechanism of biological nitrogen removal of landfill leachate and the factors affecting the microbial activity during the nitrogen removal process are also described. It is concluded that the treatment processes combined with microorganisms have higher nitrogen removal efficiency compared with the direct application of microorganisms. For example, the nitrogen removal efficiency of the combined process based on anaerobic ammonium oxidation (ANAMMOX) technology can reach more than 99%. Therefore, the treatment processes combined with microorganisms in the future engineering application of nitrogen removal in landfill leachate should be paid more attention to, and the efficiency of nitrogen removal should be improved from the aspects of microorganisms by considering factors affecting its activity.
Collapse
|
17
|
Luo X, Peng C, Shao P, Tang A, Huang A, Wu Q, Sun L, Yang L, Shi H, Luo X. Enhancing nitrate removal from wastewater by integrating heterotrophic and autotrophic denitrification coupled manganese oxidation process (IHAD-MnO): Internal carbon utilization performance. ENVIRONMENTAL RESEARCH 2021; 194:110744. [PMID: 33450238 DOI: 10.1016/j.envres.2021.110744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Due to cause the deterioration of water quality and can produce toxic nitrite, the nitrate constituted of great threatens to human health and eco-systematic safety. Among most well-known biotechnology to remove nitrate, the integrated heterotrophic and autotrophic denitrification (IHAD) process is promising, especially for the organic-limited polluted water. In this work, the IHAD coupled manganese oxidation (IHAD-MnO) process was developed by using Pseudomonas sp. SZF15 (Gram negative strain, and rod-shaped morphology with 2.3 μm in length) in the glass serum bottles. It was found that limited organic content could accelerate nitrate removal rate, and manganese oxidation efficiency can reach up to 60.08%. To further explain carbon conversion characteristics of the process, pure heterotrophic condition assays were conducted, the results confirmed that inorganic carbon will be generated by organic carbon metabolism in heterotrophic condition, the maximum accumulation content of inorganic carbon was 142.21 mg/L (when the initial organic carbon level was 293 mg-C/L). Subsequently, since the consumption of organic carbon, biogenic inorganic carbon can be further utilized by microorganisms to support autotrophic denitrification (AuDN). Besides, X-ray photoelectron spectroscopy (XPS) was employed to analyze precipitation products produced from the process. The magnified Mn 2p spectra results showed that a typical characteristic peak of manganese dioxide was observed with the intense peak at 641.8 eV and a satellite peak at 653.7 eV, respectively. This showed that Mn(II) was oxidized to manganese dioxide by the process, which may be a functional material with adsorption properties. The process posed a highly efficient and cost effective solution with less carbon consumption and less greenhouse gas emission for sustainable water treatment technologies.
Collapse
Affiliation(s)
- Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Chengyi Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Aiping Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Anping Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Qi Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Longhui Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
18
|
Sun Y, Zheng W, Ding X, Singh RP. Selective removal of nitrate using a novel asymmetric amine based strongly basic anion exchange resin. ADSORPT SCI TECHNOL 2020. [DOI: 10.1177/0263617420945839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, a novel asymmetric amine-based strongly basic anion exchange resin SE-1 was synthesized successfully via the reaction of chloromethylated styrene–divinylbenzene copolymer with N, N-dimethyloctylamine. The sorption performance of SE-1 for selective removal of nitrate in aqueous solution was compared to a commercially available nitrate specialty resin, namely Purolite A 520E (A 520E). It was found that the kinetic data could be described better by the pseudo-second-order model, and SE-1 indicated a faster sorption kinetics than A 520E resin. The Langmiur model was more appropriate for explicating the sorption isotherm. Importantly, SE-1 exhibited a greater sorption capacity for nitrate regardless of the absence or presence of competing anions in solutions. The result of column tests reinforced the feasibility of SE-1 for practical application in groundwater treatment.
Collapse
Affiliation(s)
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, China
| | - Xinchun Ding
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, China
| | - Rajendra P Singh
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, China
| |
Collapse
|
19
|
Owusu-Agyeman I, Plaza E, Cetecioglu Z. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 112:30-39. [PMID: 32497899 DOI: 10.1016/j.wasman.2020.05.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile fatty acids (VFAs) are intermediates of anaerobic digestion with high value and wide range of usage. Co-digestion of sewage sludge and external organic waste (OW) for VFA production can help achieve both resource recovery and ensure sustainable and innovative waste management. In view of this, the effect of substrate proportions on VFA production from co-digestion of primary sewage sludge and OW is studied. Long-term operation in a semi-continuous reactor was performed to assess the resilience of such a system and the VFA-rich effluent was tested for its ability to be used as carbon source for denitrification. Co-digestion was initially carried out in batch reactors with OW proportion of 0%, 25%, 50%, 75%, 100% in terms of COD and scaled up in a semi-continuous reactor operation with 50% OW. In the short-term operation in the batch mode, acetic acid dominated, however, increasing OW fraction resulted in increased valeric and caproic acid production. Moreover, in the long-term semi-continuous operation, caproic acid dominated, accounting for ≈55% of VFAs. The VFA-rich effluent from the semi-continuous reactor achieved the highest denitrification rate as a carbon source when compared with acetic acid and methanol. The results demonstrate that co-fermentation can increase VFA yield and shift products from acetic acid to caproic acid in long-term operation and the VFAs can be used within wastewater treatment plants to close the loop.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
20
|
Gao Y, Guo L, Shao M, Hu F, Wang G, Zhao Y, Gao M, Jin C, She Z. Heterotrophic denitrification strategy for marine recirculating aquaculture wastewater treatment using mariculture solid wastes fermentation liquid as carbon source: Optimization of COD/NO 3--N ratio and hydraulic retention time. BIORESOURCE TECHNOLOGY 2020; 304:122982. [PMID: 32087542 DOI: 10.1016/j.biortech.2020.122982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Heterotrophic denitrification using mariculture solid wastes (MSW) fermentation liquid as carbon source is an economically and environmentally sustainable strategy for NO3--N removal in marine recycling aquaculture systems (RAS). The optimization of COD/NO3--N ratio (C/N) and hydraulic retention times (HRT) with respect to MSW fermentation liquid driven denitrification for marine RAS wastewater treatment was investigated. The optimum C/N of 8 and HRT of 6 h for heterotrophic denitrification was obtained with NO3--N removal efficiency of 97.8% and 94.2%, respectively. Using MSW fermentation liquid as carbon source, the utilization of VFAs was more effective than that of carbohydrates and proteins, and effluent COD concentration decreased with an increment in HRT from 4 to 8 h. The results of high-throughput sequencing analysis showed microbial communities were enriched selectively in the reactors by optimizing C/N and HRT, which obviously enhanced the nitrogen removal in respect to MSW fermentation liquid driven denitrification.
Collapse
Affiliation(s)
- Yedong Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fawen Hu
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
21
|
Hu C, Guo Y, Guo L, Zhao Y, Jin C, She Z, Gao M. Comparation of thermophilic bacteria (TB) pretreated primary and secondary waste sludge carbon sources on denitrification performance at different HRTs. BIORESOURCE TECHNOLOGY 2020; 297:122438. [PMID: 31786037 DOI: 10.1016/j.biortech.2019.122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, thermophilic bacteria pretreated primary and secondary waste sludge hydrolysis and acidification liquid were used as denitrification carbon sources at different HRTs (hydraulic retention time). The NO3--N removal rate of 99.3%, 99.0%, 99.9% and 99.2% was achieved at the optimal HRT of 8, 8, 4 and 6 h, respectively. Meanwhile, the utilization of COD (Chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) in carbon source during denitrification was also investigated. High-throughput sequencing technology showed that the microbial community changed with the different sludge carbon sources. And the dominant genus in both reactors was Thauera, which played a key role in denitrification.
Collapse
Affiliation(s)
- Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
22
|
New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Appl Microbiol Biotechnol 2019; 103:7459-7466. [PMID: 31388729 DOI: 10.1007/s00253-019-10070-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Anaerobic ammonium oxidation (anammox) is an important scientific discovery in the field of wastewater treatment. This process is a sustainable option in nitrogen removal due to its energy-efficient and cost-effective advantage. Great effort has been made recently to remove ammonium from industrial and municipal wastewater via the anammox process with a preceding partial nitrification (PN) converting part of NH4+ to NO2-. Anammox process is seldom involved in the nitrate removal. Nitrate (NO3-), one of the main nitrogen compounds produced from various industries, is typically converted to nitrogen gas via denitrification process where a large amount of carbon source is consumed. Within this context, we reviewed the current technologies for high-strength nitrate wastewater treatment. It is found that nitrite accumulation often occurs during nitrate reduction, and its accumulating level would be increased at certain conditions (i.e., low C/N ratio and high pH). Hence, this provides a great opportunity to employ the anammox process to further convert nitrite in a more sustainable way. In this review, we highlight a new approach for industrial nitrate wastewater treatment via partial denitrification coupled with anammox process (PD-A). We also discuss the conditions to achieve successful PD-A process, economic and environmental benefits, and potential challenges as well as the future perspectives in practical application.
Collapse
|
23
|
Enhancement of rice bran as carbon and microbial sources on the nitrate removal from groundwater. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Manu DS, Thalla AK. Influence of various operating conditions on wastewater treatment in an AS-biofilm reactor and post-treatment using TiO 2-based solar/UV photocatalysis. ENVIRONMENTAL TECHNOLOGY 2019; 40:1271-1288. [PMID: 29272217 DOI: 10.1080/09593330.2017.1420697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
In the present study, the effect of carbon to nitrogen (C/N) ratio, suspended biomass concentration (X), hydraulic retention time (HRT) and dissolved oxygen (DO) on chemical oxygen demand (COD) and nutrient removal from wastewater was investigated in a lab-scale activated sludge (AS)-biofilm reactor. Furthermore, in order to improve the quality of the treated wastewater, photocatalysis by TiO2 was investigated as a post-treatment technology, using solar and UV irradiations. The AS-biofilm reactor provided a substantial removal efficiency in terms of COD, ammonia nitrogen (NH4+-N) , total nitrogen (TN) and total phosphorous when the system was maintained at C/N ratio 6.66, X in the range 2-2.5 g/L, HRT 10 h, DO in the range of 3.5-4.5 mg/L and organic loading rate (OLR) of 0.96 kg COD/m3 d during Run 1. Similarly, when the reactor was maintained at C/N ratio 10, X in the range of 3-3.5 g/L, HRT 8 h, DO in the range of 3.5-4.5 mg/L and OLR of 1.8 kg COD/m3 d during Run 2. The microstructure of suspended and attached biomass comprised a dense bacterial structure of cocci and bacillus microorganisms. The UV photocatalysis was found to be better than solar photocatalysis during the comparative analysis. The maximum removal efficiencies of COD, most probable number and phosphorous at optimum conditions in the case of UV and solar irradiations were 72%, 95%, 52% and 71%, 99%, 50%, respectively.
Collapse
Affiliation(s)
- D S Manu
- a Department of Civil Engineering , National Institute of Technology Karnataka , Mangalore , India
| | - Arun Kumar Thalla
- a Department of Civil Engineering , National Institute of Technology Karnataka , Mangalore , India
| |
Collapse
|
25
|
Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. BIORESOURCE TECHNOLOGY 2018; 268:773-786. [PMID: 30030049 DOI: 10.1016/j.biortech.2018.07.042] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 05/28/2023]
Abstract
Bio-based volatile fatty acid (VFA) production from waste-stream is getting attention due to increasing market demand and wide range usage area as well as its cost-effective and environmentally friendly approach. The aim of this paper is to give a comprehensive review of bio-based VFA production and recovery methods and to give an opinion on future research outlook. Effects of operation conditions including pH, temperature, retention time, type of substrate and mixed microbial cultures on VFA production and composition were reviewed. The recovery methods in terms of gas stripping with absorption, adsorption, solvent extraction, electrodialysis, reverse osmosis, nanofiltration, and membrane contractor of VFA were evaluated. Furthermore, strategies to enhance bio-based VFA production and recovery from waste streams, specifically, in-line VFA recovery and bioaugmentation, which are currently not used in common practice, are seen as some of the approaches to enhance bio-based VFA production.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
26
|
Tuszynska A, Kaszubowska M, Kowal P, Ciesielski S, Makinia J. The metabolic activity of denitrifying microorganisms accumulating polyphosphate in response to addition of fusel oil. Bioprocess Biosyst Eng 2018; 42:143-155. [PMID: 30291416 PMCID: PMC6329743 DOI: 10.1007/s00449-018-2022-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023]
Abstract
The effect of distillery waste product (fusel oil) as an alternative external organic carbon source (EOCS) was investigated in terms of the metabolic properties of denitrifying polyphosphate accumulating organisms (DPAOs). Samples of the non-acclimated biomass were collected from a local full-scale wastewater treatment plant employing A2/O type bioreactors. The acclimated biomass was obtained after cultivation (with fusel oil added) in a bench-scale reactor with a process configuration similar to the full-scale bioreactor. Changes in the functional properties of the biomass were investigated by measuring the phosphate release/uptake rates (PRRs and PURs), and nitrate utilization rates (NURs) with fusel oil in anaerobic-anoxic batch tests. Furthermore, a validated extended Activated Sludge Model no 2d (ASM2d) was used as a supporting tool to analyze the experimental results and estimate the contribution of DPAOs to the overall denitrification. In the non-acclimated biomass with fusel oil, the PRRs, PURs and NURs were low and close to the rates obtained in a reference test without adding EOCS. With the acclimated biomass, the PUR and NUR increased significantly, i.e., 3.5 and 2.7 times, respectively. In the non-acclimated biomass, approximately 60.0 ± 3.6% and 20.0 ± 2.2% of the total NUR was attributed to the utilization of endogenous carbon and examined EOCS, respectively. The remaining portion (20% of the total NUR) was attributed to PHA utilization (linked to PO4-P uptake) by DPAOs. With the acclimated biomass, the contribution of the EOCS to the NUR increased to approximately 60%, while the contribution of the endogenous carbon source decreased accordingly. Very accurate predictions of PURs and NURs (R2 = 0.97–1.00) were obtained with the extended ASM2d. Based on model simulations, it was estimated that the activity of DPAOs and denitrifying ordinary heterotrophic organisms corresponded to approximately 20% and 80% of the total NUR, respectively.
Collapse
Affiliation(s)
- Agnieszka Tuszynska
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland.
| | - Magdalena Kaszubowska
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| | - Przemyslaw Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| | - Slawomir Ciesielski
- Department of Environmental Sciences, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-917, Olsztyn, Poland
| | - Jacek Makinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
27
|
Walczak J, Zubrowska-Sudol M. The rate of denitrification using hydrodynamically disintegrated excess sludge as an organic carbon source. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2165-2173. [PMID: 29757168 DOI: 10.2166/wst.2018.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of hydrodynamically disintegrated excess activated sludge when used as a supplementary carbon source for denitrification. Two objectives constituted this study: (i) to analyse the denitrification rate by using excess sludge subjected to hydrodynamic disintegration (HD), performed at different energy densities, as an organic carbon source, and (ii) to analyse the impact of hydrolysis of disintegrated sludge on the denitrification rate. Nitrate reduction tests were conducted to assess the denitrification rate for the following sources of organic carbon: thickened excess sludge disintegrated at three levels of energy density (70, 140 and 210 kJ/L), acetic acid solution and municipal wastewater after mechanical treatment. It was found that the HD of excess sludge conducted at different levels of energy density led to dissolved organic compounds characterised by various properties as donors of H+ in the denitrification process. The susceptibility of disintegrated sludge to anaerobic hydrolysis decreased along with the increasing energy density. The obtained organic carbon contributed to a lower increase in the denitrification rate in comparison to that when disintegrated sludge not subjected to hydrolysis was applied.
Collapse
Affiliation(s)
- J Walczak
- Faculty of Building Services, Hydro and Environmental Engineering, Department of Water Supply and Wastewater Management, Warsaw University of Technology, ul. Nowowiejska 20, 00-653 Warsaw, Poland E-mail:
| | - M Zubrowska-Sudol
- Faculty of Building Services, Hydro and Environmental Engineering, Department of Water Supply and Wastewater Management, Warsaw University of Technology, ul. Nowowiejska 20, 00-653 Warsaw, Poland E-mail:
| |
Collapse
|
28
|
Guo L, Guo Y, Sun M, Gao M, Zhao Y, She Z. Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13079-13092. [PMID: 29484622 DOI: 10.1007/s11356-017-0836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Using waste sludge internal carbon source for nitrogen removal in wastewater has drawn much attention, due to its economic advantages and sludge reduction. In this study, the performance of enhanced denitrification with waste sludge thermal hydrolysate and fermentation liquid as carbon sources at different SCOD/N (soluble chemical oxygen demand/NO3--N) was investigated. The optimum SCOD/N was 8 for sludge thermal hydrolysate and 7 for fermentation liquid, with NO3--N removal efficiency of 92.3 and 98.9%, respectively, and no NO2--N accumulation. To further understand the fate of sludge carbon source during denitrification, the changes of SCOD, proteins, carbohydrates, and volatile fatty acids (VFAs) were analyzed, and three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) analysis was introduced. The utilization of SCOD was consistent with NO3--N reduction, and the utilization efficiency of different organic matter was as follows: VFAs > proteins > carbohydrates. The soluble organic-like materials (region IV) were the most readily utilized organic matter according to three-dimensional fluorescence EEM spectroscopy. Regarding denitrification mechanisms, the denitrification rate (VDN), denitrification potential (PDN), heterotroph anoxic yield (YH), and the most readily biodegradable COD (SS) were also investigated.
Collapse
Affiliation(s)
- Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mei Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
29
|
Liu N, Jiang J, Yan F, Xu Y, Yang M, Gao Y, Aihemaiti A, Zou Q. Optimization of simultaneous production of volatile fatty acids and bio-hydrogen from food waste using response surface methodology. RSC Adv 2018; 8:10457-10464. [PMID: 35540465 PMCID: PMC9078927 DOI: 10.1039/c7ra13268a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/08/2018] [Indexed: 11/21/2022] Open
Abstract
Anaerobic digestion of food waste (FW) is commonly considered an effective and green technology to convert solid waste into valuable feedstock including volatile fatty acids (VFAs) and hydrogen. Response surface methodology (RSM) was selected to analyze the production of VFAs and hydrogen from food waste in a batch process. The effect of the three variables i.e. total solid content (TS), pH, and reaction time under each variable at three levels on VFAs and hydrogen production was assessed. The optimum conditions determined via RSM were pH = 7.0, TS = 100 g L−1, and reaction time = 3 d. The maximum VFA and hydrogen production was 26.17 g L−1 and 46.03 mL g−1 volatile solids added, respectively. The ratio of observed hydrogen (Ho) to predicted hydrogen (Hp) was x < 1.0 because of inhibition of hydrogen production by VFA accumulation. The subsequent microbial community analysis result was also consistent with the abovementioned results. The evolution of Bacteroidetes, which facilitate VFA production, has been enriched by about 16.1-times at pH 7.0 followed by 10.2-times at pH 6.0 as compared to that in the uncontrolled pH batch. Response surface methodology was applied to optimal VFA production from food waste, which could evaluate the interactive effect of each parameter as compared to the traditional approach about just one variable a time on VFA production.![]()
Collapse
Affiliation(s)
- Nuo Liu
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Jianguo Jiang
- School of Environment
- Tsinghua University
- Beijing 100084
- China
- Key Laboratory for Solid Waste Management and Environment Safety
| | - Feng Yan
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yiwen Xu
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Meng Yang
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yuchen Gao
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | | | - Quan Zou
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
30
|
Kim E, Shin SG, Jannat MAH, Tongco JV, Hwang S. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: A full-scale study. BIORESOURCE TECHNOLOGY 2017; 245:1016-1021. [PMID: 28946203 DOI: 10.1016/j.biortech.2017.08.168] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Using organic wastes as an alternative to commercial carbon sources could be beneficial by reducing costs and environmental impacts. In this study, food waste-recycling wastewater (FRW) was evaluated as an alternative carbon source for biological denitrification over a period of seven months in a full-scale sewage wastewater treatment plant. The denitrification performance was stable with a mean nitrate removal efficiency of 97.2%. Propionate was initially the most persistent volatile fatty acid, but was completely utilized after 19days. Eubacteriacea, Saprospiraceae, Rhodocyclaceae and Comamonadaceae were the major bacterial families during FRW treatment and were regarded as responsible for hydrolysis (former two) and nitrate removal (latter two) of FRW. These results demonstrate that FRW can be an effective external carbon source; process stabilization was linked to the acclimation and function of bacterial populations to the change of carbon source.
Collapse
Affiliation(s)
- Eunji Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH), Jinju, South Korea
| | - Md Abu Hanifa Jannat
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Jovale Vincent Tongco
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea
| | - Seokhwan Hwang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
31
|
Guo Y, Guo L, Sun M, Zhao Y, Gao M, She Z. Effects of hydraulic retention time (HRT) on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources. BIORESOURCE TECHNOLOGY 2017; 224:147-156. [PMID: 27913171 DOI: 10.1016/j.biortech.2016.11.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
Waste activated sludge (WAS) internal carbon source can efficiently and economically enhance denitrification, and hydraulic retention time (HRT) is one of the most important operational parameters for denitrification. The effects of HRT on denitrification were investigated with WAS thermal hydrolysis liquid and acidogenic liquid as carbon sources in this study. The optimal HRT was 12h for thermal hydrolysis liquid and 8h for acidogenic liquid, with NO3--N removal efficiency of 91.0% and 97.6%, respectively. In order to investigate the utilization of sludge carbon source by denitrifier, the changes of SCOD (Soluble chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) during denitrification process were analyzed and three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) analysis was introduced. The kinetics parameters of denitrification rate (VDN), denitrification potential (PDN) and heterotroph anoxic yield (YH) were also investigated using sludge carbon source at different HRT.
Collapse
Affiliation(s)
- Yiding Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| | - Mei Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|