1
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
2
|
Polybutylene succinate (PBS)/acrylonitrile butadiene styrene (ABS) membrane with improved mechanical properties for wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Rabajczyk A, Zielecka M, Cygańczuk K, Pastuszka Ł, Jurecki L. The Use of Polymer Membranes to Counteract the Risk of Environmental of Soil and Water Contamination. MEMBRANES 2021; 11:membranes11060426. [PMID: 34199707 PMCID: PMC8226685 DOI: 10.3390/membranes11060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Chemical, biological, radiological, or nuclear (CBRN) contamination of the environment is a significant threat to human health and life as well as environmental safety. It is then necessary to take actions aimed at minimizing and eliminating the threat. Depending on the type of contamination, various methods are used, including sorption, biodegradation, separation, or ion exchange processes in which membranes play an important role. The type of membrane is selected in respect of both the environment and the type of neutralized pollutants. Therefore, the production and modification of membranes are being adapted to the type of contamination and the purpose of the work. This article presents examples of membranes and their possible applications depending on the part of the environment subject to reclamation and the type of contamination.
Collapse
|
7
|
Li X, Wang X, Yang L, Zhang F, Xie L, Luo Z, Xiang K. Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water‐resistant and mechanical performances of glass fiber–reinforced polyamide 6. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaolong Li
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
| | - Xinchao Wang
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer materials Guiyang 550014 China
| | - Le Yang
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
| | - Feng Zhang
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
| | - Lijin Xie
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
| | - Zhu Luo
- College of Materials & MetallurgyGuizhou University Guiyang 550025 China
- National Engineering Research Center for Compounding and Modification of Polymer materials Guiyang 550014 China
| | - Kun Xiang
- School of Physics and Electronic ScienceGuizhou Education University Guiyang 550018 China
| |
Collapse
|
8
|
Abstract
The potential emerging pollutants (PEPs) such as hazardous chemicals, toxic metals, bio-wastes, etc., pose a severe threat to human health, hygiene and ecology by way of polluting the environment and water sources. The PEPs are originated from various industrial effluent discharges including pharmaceutical, food and metal processing industries. These PEPs in contact with water may pollute the water and disturb the aquatic life. Innumerable methods have been used for the treatment of effluents and separating the toxic chemicals/metals. Of these methods, membrane-based separation processes (MBSPs) are effective over the conventional techniques for providing clean water from wastewater streams at an affordable cost with minimum energy requirement. Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and forward osmosis (FO) methods as well as hybrid technologies are discussed citing the published results of the past decade.
Collapse
|
9
|
Yu P, Hu T, Chen HH, Wu F, Liu H. Effective Removal of Congo Red by Triarrhena Biochar Loading with TiO 2 Nanoparticles. SCANNING 2018; 2018:7670929. [PMID: 29967660 PMCID: PMC6008826 DOI: 10.1155/2018/7670929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A composite of pyrolytic Triarrhena biochar loading with TiO2 nanoparticles has been synthesized by the sol-gel method. The composite shows a well-developed hollow mesoporous and macropore structure as characterized by XRD, BET, and SEM. When used as an absorbent to remove Congo red from aqueous solution, it was found that as-prepared composite performed better absorption capacity than single biochar or TiO2. The results suggest that biochar loading with TiO2 could be promisingly implemented as an environmentally friendly and inexpensive adsorbent for Congo red removal from wastewater.
Collapse
Affiliation(s)
- Peng Yu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Tao Hu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Hong Hui Chen
- Changde Xinrui New Material Co. Ltd., Changde 415004, China
| | - Fangfang Wu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Hui Liu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|