1
|
Jones C, O'Neil T, Lyman S. Measurements of organic compound emissions from a produced water disposal vault. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2025; 75:334-347. [PMID: 39928841 DOI: 10.1080/10962247.2025.2462000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 02/12/2025]
Abstract
We measured organic compound emissions from a produced-water, evaporative disposal facility's oil-water separation vault in May 2022 and March-May 2023. Produced water is water pulled from the subsurface of a well along with the oil and natural gas; some produced water is disposed of by allowing it to evaporate from surface impoundments. The vault measured in this study separated residual oil from produced water before evaporative disposal. Because the vault's surface contained many potential small emission sources, we used a large plastic chamber to cover the entire vault and simultaneously capture all emissions. We also measured organic compounds in ambient air upwind and downwind of the vault and estimated emissions via a backward Lagrangian stochastic model (Windtrax). The total non-methane organic compound (TNMOC) emission rate from the vault ranged from 0.27 to 3.05 kg/h, averaging 1.99 kg/h in 2022 and 0.49 kg/h in 2023. The average TNMOC emission rate determined by the bLS method was 48% higher than the emission rate determined by the chamber method in 2023 (average of 0.73 kg/h). Still, the range of the chamber results fell within the range of TNMOC emissions from the model. Methanol emissions were much higher than the bLS method, averaging 85.3 g/hr, but were highly variable. We surmise that the water condensation on the chamber retained methanol and biased the results low. The extrapolated annual average emissions of methane, TNMOC, and methanol from the vault were 0.1, 15.5, and 1.4 U.S. tons/yr, respectively, within the range of emissions from uncontrolled oil storage tanks. The extrapolation considers bias in the chamber method and differences across the two years of measurements.Implications: The findings from our study indicate that emissions of non-methane organic compounds (TNMOC) from the oil-water separation vault at the produced-water evaporative disposal facility exhibit significant variability between years, with a notable decline in average emissions from 2022 to 2023. The higher emission rates recorded using the backward Lagrangian stochastic (bLS) model compared to the chamber method suggest that further investigation into measurement techniques is warranted to ensure accurate assessments of emissions. Additionally, the substantial variability in methanol emissions highlights the need for more controlled conditions during sampling to avoid potential biases. Overall, these results imply that while emissions from the vault are within the range of those from uncontrolled oil storage tanks, there is an ongoing necessity for improved monitoring and regulatory practices to mitigate environmental impacts associated with produced water disposal.
Collapse
Affiliation(s)
- Colleen Jones
- Bingham Research Center, Utah State University, Vernal, UT, USA
| | - Trevor O'Neil
- Bingham Research Center, Utah State University, Vernal, UT, USA
| | - Seth Lyman
- Bingham Research Center, Utah State University, Vernal, UT, USA
| |
Collapse
|
2
|
Tawabini B, Basaleh A. Treatment of Produced Water Using a Pilot-Scale Advanced Electrochemical Oxidation Unit. Molecules 2025; 30:1272. [PMID: 40142047 PMCID: PMC11946214 DOI: 10.3390/molecules30061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
The main goal of this study is to optimize the treatment of produced water (PW) using a pilot-scale advanced electrochemical oxidation unit. The electro-cell is outfitted with a boron-doped diamond BDD anode and gas diffusion (GDE) cathode. Synthetic PW was prepared in the laboratory following a protocol designed to closely replicate the characteristics of real PW. The PW used in this study had a total dissolved solids (TDS) concentration of 16,000 mg/L and a total organic carbon (TOC) concentration of 250 mg/L. The effect of various electrooxidation parameters on the reduction in TOC was investigated including pH (2-12), electric current (I) (50-200 mA/cm2), and airflow rate (0-4 NL/min). Response surface method RSM with a Box-Behnken design at a confidence level of 95 percent was employed to analyze the impact of the above factors, with TOC removal used as a response variable. The results revealed that the TOC level decreased by 84% from 250 to 40 mg/L in 4 h, current density of 200 mA/cm2, pH of 12, and airflow rate 2 (NL/min). The investigation verified the influential role of diverse operational factors in the treatment process. RSM showed that reducing the airflow rate and increasing pH levels and electric current significantly enhanced the TOC removal. The obtained results demonstrated profound TOC removal, confirming the substantial potential of treating PW using the electrochemical method.
Collapse
Affiliation(s)
- Bassam Tawabini
- Department of Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31262, Saudi Arabia;
- IRC Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31262, Saudi Arabia
| | - Abdullah Basaleh
- Department of Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31262, Saudi Arabia;
| |
Collapse
|
3
|
Willems DJ, Kumar A, Nugegoda D. Chronic toxicity of dissolved barium and sodium chloride to the water flea Ceriodaphnia dubia: implications for unconventional gas flowback-produced waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:169-183. [PMID: 39887277 PMCID: PMC11790209 DOI: 10.1093/etojnl/vgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 02/01/2025]
Abstract
Unconventional gas flowback-produced waters, particularly those of marine origin from shale gas, can contain elevated concentrations of barium (Ba) and sodium chloride (NaCl). There are limited Ba water quality guideline values to help assess the potential risk of Ba exposure to freshwater biota. Barium toxicity is heavily influenced by sulfate concentrations as Ba and sulfate react, forming the highly water-insoluble and thus less bioavailable Ba sulfate. To determine survival and reproductive impacts, the water flea Ceriodaphnia dubia was exposed to dissolved Ba, NaCl, and binary combinations of dissolved Ba and NaCl. No chronic lethal concentration (LC) endpoints could be determined for dissolved Ba-only exposure up to 16 mg/L due to near 100% parent survivorship across all treatments. The NaCl LC50 (95% credible intervals) = 708 (502-939) mg/L. The dissolved Ba reproductive effect concentration (EC) at EC20 was 0.95 (0.19-3.22) mg/L. Meanwhile, for NaCl, the EC10 and EC20 concentrations were 365 (149-651) mg/L and 510 (282-760) mg/L, respectively. The binary exposure of Ba and NaCl had limited meaningful data due to some experimental shortcomings (lack of Ba-only and NaCl-only controls). Despite this, at 410 mg/L NaCl, the dissolved Ba reproductive EC10 and EC20 were determined to be 8.87 [3.58-11.7] mg/L and 10.1 (5.64-11.8) mg/L, respectively. These results suggest that marginally increased NaCl concentrations alleviate Ba toxicity, particularly when Ba is at low concentrations. Further chronic studies are needed to account for Ba toxicity in dissolved and precipitated forms and derive a Ba guideline value for freshwater biota.
Collapse
Affiliation(s)
- Daniel J Willems
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora West Campus, Victoria, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Adelaide, South Australia, Australia
| | - Anupama Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, Adelaide, South Australia, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora West Campus, Victoria, Australia
| |
Collapse
|
4
|
Mohamed M, Tagliabue M, Tiraferri A. Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration. MEMBRANES 2024; 14:107. [PMID: 38786941 PMCID: PMC11123107 DOI: 10.3390/membranes14050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m-2h-1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m-2h-1, when running the system to achieve 100% relative recovery.
Collapse
Affiliation(s)
- Madina Mohamed
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| | - Marco Tagliabue
- Eni S.p.A., Research and Development, Via F. Maritano, 26, 20097 San Donato M.se, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
5
|
Zhuang Y, Ji Y, Kuang Q, Zhang Z, Li P, Song J, He N. Oxidation treatment of shale gas produced water: Molecular changes in dissolved organic matter composition and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131266. [PMID: 36996539 DOI: 10.1016/j.jhazmat.2023.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Produced water (PW) is the largest waste stream generated by hydraulic fracturing in an unconventional shale gas reservoir. Oxidation processes (OPs) are frequently used as advanced treatment method in highly complicated water matrix treatments. However, the degradation efficiency is the main focus of research, organic compounds and their toxicity have not been properly explored. Here, we obtained the characterization and transformation of dissolved organic matters of PW samples from the first shale gas field of China by two selected OPs using FT-ICR MS. CHO, CHON, CHOS, and CHONS heterocyclic compounds associated with lignins/CRAM-like, aliphatic/proteins, and carbohydrates compounds were the major organic compounds identified. Electrochemical Fe2+/HClO oxidation preferentially removed aromatic structures, unsaturated hydrocarbons, and tannin compounds with a double-bond equivalence (DBE) value below 7 to more saturated compounds. Nevertheless, Fe (VI) degradation manifested in CHOS compounds with low DBE values, especially single bond compounds. Oxygen- and Sulfur-containing substances, primarily O4-11, S1O3-S1O12, N1S1O4, and N2S1O10 classes, were the main recalcitrant components in OPs. The toxicity assessment showed that the free-radical-formed Fe2+/HClO oxidation could cause significant DNA damage. Therefore, the toxicity response byproducts need spcial attention when conducting OPs. Our results led to discussions on designing appropriate treatment strategies and the development of PW discharge or reuse standards.
Collapse
Affiliation(s)
- Yiling Zhuang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Yufei Ji
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qiyue Kuang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zhaoji Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Peng Li
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| | - Junbei Song
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| | - Niqian He
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co.Ltd., Chongqing 408014, PR China
| |
Collapse
|
6
|
Hernandez-Becerra N, Cliffe L, Xiu W, Boothman C, Lloyd JR, Nixon SL. New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:14. [PMID: 36855215 PMCID: PMC9972762 DOI: 10.1186/s40793-023-00465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hydraulically fractured shales offer a window into the deep biosphere, where hydraulic fracturing creates new microbial ecosystems kilometers beneath the surface of the Earth. Studying the microbial communities from flowback fluids that are assumed to inhabit these environments provides insights into their ecophysiology, and in particular their ability to survive in these extreme environments as well as their influence on site operation e.g. via problematic biofouling processes and/or biocorrosion. Over the past decade, research on fractured shale microbiology has focused on wells in North America, with a few additional reported studies conducted in China. To extend the knowledge in this area, we characterized the geochemistry and microbial ecology of two exploratory shale gas wells in the Bowland Shale, UK. We then employed a meta-analysis approach to compare geochemical and 16S rRNA gene sequencing data from our study site with previously published research from geographically distinct formations spanning China, Canada and the USA. RESULTS Our findings revealed that fluids recovered from exploratory wells in the Bowland are characterized by moderate salinity and high microbial diversity. The microbial community was dominated by lineages known to degrade hydrocarbons, including members of Shewanellaceae, Marinobacteraceae, Halomonadaceae and Pseudomonadaceae. Moreover, UK fractured shale communities lacked the usually dominant Halanaerobium lineages. From our meta-analysis, we infer that chloride concentrations play a dominant role in controlling microbial community composition. Spatio-temporal trends were also apparent, with different shale formations giving rise to communities of distinct diversity and composition. CONCLUSIONS These findings highlight an unexpected level of compositional heterogeneity across fractured shale formations, which is not only relevant to inform management practices but also provides insight into the ability of diverse microbial consortia to tolerate the extreme conditions characteristic of the engineered deep subsurface.
Collapse
Affiliation(s)
- Natali Hernandez-Becerra
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Lisa Cliffe
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Wei Xiu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Christopher Boothman
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Sophie L Nixon
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Shi H, He X, Zhou C, Wang L, Xiao Y. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:284-298. [PMID: 36737498 DOI: 10.1007/s00244-023-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Hydraulic fracturing technologies have been frequently utilized in the oil and gas industry as exploration and development efforts have progressed, resulting in a significant increase in the extraction of natural gas and petroleum from low-permeability reservoirs. However, hydraulic fracturing requires a large amount of freshwater, and the process results in the production of large volumes of flowback water along with natural gas. In this study, three tight sandstone gas wells were fractured in the Sulige gasfield (China), and a total of 103 flowback fluid samples were collected. The hydrochemical characteristics, water quality and sources of hydrochemical components in the flowback fluid were discussed. The results show that the flowback fluid is characterized by high salinity (Total dissolved solids (TDS) up to 38,268 mg/L, Cl- up to 24,000 mg/L), high concentrations of metal ions (e.g., Fe, Sr2+, Ba2+) and high chemical oxygen demand (COD). The flowback fluid is a complex mixture of fracturing fluid and formation water, and its composition is impacted by water-rock interactions that occur during hydraulic fracturing. The major contaminants include COD, Fe, Ba2+, Cl-, Mn and pH, which constitute a high risk of environmental pollution. Meanwhile, chemical elements such as K, Ba and Sr are unusually enriched in the flowback fluid, which has an excellent potential for recycle of chemical elements. The Sulige gasfield's flowback fluid recovery methods and treatment scenarios were discussed, taking into consideration the pollution and resource characteristics of the flowback fluid. Options for dealing with the flowback fluid include deep well reinjection, reuse for making up fracturing fluid, recycling of chemical elements and diverse reuse of flowback water. This research offers guidance for managing the fracturing flowback fluid in unconventional oil and gas fields.
Collapse
Affiliation(s)
- Hua Shi
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| | - Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Changjing Zhou
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| | - Lili Wang
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| | - Yuanxiang Xiao
- Oil and Gas Technology Research Institute of Changqing Oilfield Company, PetroChina, Xi'an, 710018, Shaanxi, China
| |
Collapse
|
8
|
Willems DJ, Kumar A, Nugegoda D. The Acute Toxicity of Salinity in Onshore Unconventional Gas Waters to Freshwater Invertebrates in Receiving Environments: A Systematic Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2928-2949. [PMID: 36193756 PMCID: PMC9828407 DOI: 10.1002/etc.5492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Industries such as unconventional natural gas have seen increased global expansion to meet the increasing energy needs of our increasing global population. Unconventional gas uses hydraulic fracturing that produces significant volumes of produced waters, which can be highly saline and pose a toxic threat to freshwater invertebrates if exposure via discharges, spills, leaks, or runoff were to occur. The primary aim of the present review was to determine the sodium (Na+ ) and chloride (Cl- ) content of these waters as an approximate measure of salinity and how these values compare to the NaCl or synthetic marine salt acute toxicity values of freshwater invertebrate taxa. Shale gas produced waters are much more saline with 78 900 ± 10 200 NaCl mg/L and total dissolved solids (TDS) of 83 200 ± 12 200 mg/L compared to coal bed methane (CBM) produced waters with 4300 ± 1100 NaCl mg/L and TDS of 5900 ± 1300 mg/L and pose a far greater toxicity risk from NaCl to freshwater invertebrates. In addition, the toxicity of other major ions (Ca2+ , K+ , Mg2+ ,CO 3 2 - , HCO3 - , andSO 4 2 - ) and their influence on the toxicity of Na+ and Cl- were evaluated. Exposure of untreated and undiluted shale gas produced waters to freshwater invertebrates is likely to result in significant or complete mortality. Shale gas produced waters have higher concentrations of various metals compared with CBM produced waters and are more acidic. We recommend future research to increase the reporting and consistency of water quality parameters, metals, and particularly organics of produced waters to provide a better baseline and help in further investigations. Environ Toxicol Chem 2022;41:2928-2949. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Willems
- Ecotoxicology Research Group, School of ScienceRMIT UniversityBundooraVictoriaAustralia
- CSIRO Land and WaterUrrbraeSouth AustraliaAustralia
| | | | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of ScienceRMIT UniversityBundooraVictoriaAustralia
| |
Collapse
|
9
|
Earwood J, Xu G, Xing Y, Deng B. Surface modified basalt membrane as a photothermal material for improved oily wastewater solar evaporation. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- John Earwood
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA
| | - Gan Xu
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Yangchuan Xing
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Hutchings GJ, Davies PR, Pattisson S, Davies TE, Morgan DJ, Dlamini MW. Facile synthesis of a porous 3D g-C3N4 photocatalyst for the degradation of organics in shale gas brines. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Willis MD, Hill EL, Kile ML, Carozza S, Hystad P. Associations between residential proximity to oil and gas extraction and hypertensive conditions during pregnancy: a difference-in-differences analysis in Texas, 1996-2009. Int J Epidemiol 2022; 51:525-536. [PMID: 34897479 PMCID: PMC9082796 DOI: 10.1093/ije/dyab246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oil and gas extraction produces air pollutants that are associated with increased risks of hypertension. To date, no study has examined residential proximity to oil and gas extraction and hypertensive conditions during pregnancy. This study quantifies associations between residential proximity to oil and gas development on gestational hypertension and eclampsia. METHODS We utilized a population-based retrospective birth cohort in Texas (1996-2009), where mothers reside <10 km from an active or future drilling site (n = 2 845 144.) Using full-address data, we linked each maternal residence at delivery to assign exposure and evaluate this exposure with respect to gestational hypertension and eclampsia. In a difference-in-differences framework, we model the interaction between maternal health before (unexposed) or after (exposed) the start of drilling activity (exposed) and residential proximity near (0-1, >1-2 or >2-3 km) or far (≥3-10 km) from an active or future drilling site. RESULTS Among pregnant women residing 0-1 km from an active oil or gas extraction site, we estimate 5% increased odds of gestational hypertension [95% confidence interval (CI): 1.00, 1.10] and 26% increased odds of eclampsia (95% CI: 1.05, 1.51) in adjusted models. This association dissipates in the 1- to 3-km buffer zones. In restricted models, we find elevated odds ratios among maternal ages ≤35 years at delivery, maternal non-Hispanic White race, ≥30 lbs gained during pregnancy, nulliparous mothers and maternal educational attainment beyond high school. CONCLUSIONS Living within 1 km of an oil or gas extraction site during pregnancy is associated with increased odds of hypertensive conditions during pregnancy.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Elaine L Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susan Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
12
|
Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass. ENERGIES 2022. [DOI: 10.3390/en15072683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made.
Collapse
|
13
|
Al-Kaabi MA, Zouari N, Da'na DA, Al-Ghouti MA. Adsorptive batch and biological treatments of produced water: Recent progresses, challenges, and potentials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112527. [PMID: 33895448 DOI: 10.1016/j.jenvman.2021.112527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Produced water is responsible for the largest contribution in terms of waste stream volume associated with the production of oil and gas. Characterization of produced water is very crucial for the determination of its main components and constituents for optimal selection of the treatment method. This review aims to review and critically discuss various treatment options that can be considered cost-efficient and environmentally friendly for the removal of different pollutants from produced water. Great efforts and progresses were made in various treatment options, including batch adsorption processes, membrane filtration, advanced oxidation, biological systems, adsorption, coagulation, and combined processes. Chemical precipitation, membrane filtration, and adsorption have high removal efficiencies that can reach more than 90% for different produced water components. The most effective method among these methods is adsorption using different adsorbents media. In this review, date-pits activated carbons, microemulsions-modified date pits, and cellulose nanocrystals as low-cost adsorbents were thoroughly reviewed and discussed. Moreover, the potential of using biological treatments in the removal of various pollutants from produced water such as conventional activated sludge, sequential batch reactor, and fixed-film biological aerated filter reactors were systematically discussed. Generally, produced water can be utilized in various fields including habitat and wildlife, agricultural and irrigation sector, energy sector, fire control, industrial use also power regeneration. The degree of treatment will depend on the application that produced water is being reused in. For instance, to use produced water in oil and gas industries, water will require minimal treatment while for agricultural and drinking purposes high treatment level will be required. It can also be concluded that one specific technique cannot be recommended that will meet all requirements including environmental, reuse, and recycling for sustainable energy. This is because of various dominant factors including the type of field, platform type, chemical composition, geological location, and chemical composition of the production chemicals.
Collapse
Affiliation(s)
- Maryam A Al-Kaabi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha. P.O. Box: 2713, Qatar
| | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha. P.O. Box: 2713, Qatar
| | - Dana Adel Da'na
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha. P.O. Box: 2713, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha. P.O. Box: 2713, Qatar.
| |
Collapse
|
14
|
Ji Y, Zhang Z, Zhuang Y, Liao R, Zhou Z, Chen S. Molecular-level variation of dissolved organic matter and microbial structure of produced water during its early storage in Fuling shale gas field, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38361-38373. [PMID: 33733405 DOI: 10.1007/s11356-021-13228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Shale gas-produced water (PW), the waste fluid generated during gas production, contains a large number of organic contaminants and high salinity matrix. Previous studies generally focused on the end-of-pipe treatment of the PW and ignored the early collection process. In this study, the transformation of the molecular composition and microbial community structure of the PW in the transportation and storage process (i.e., from the gas-liquid separator to the storage tank) were investigated. As the PW was transported from the gas-liquid separator to the portable storage tank, the dissolved organic matter (DOM) showed greater saturation, less oxidation, and lower polarity. DOMs with high O/C and low H/C ratios (numbers of oxygen and hydrogen divided by numbers of carbon) were eliminated, which may be due to precipitation or adsorption by the solids suspended in the PW. The values of double-bond equivalent (DBE), DBE/C (DBE divided by the number of carbon), and aromatic index (AI) decreased, likely because of the microbial degradation of aromatic compounds. The PW in the gas-liquid separator presented a lower biodiversity than that in the storage tank. The microbial community in the storage tank showed the coexistence of anaerobes and aerobes. Genera related to biocorrosion and souring were detected in the two facilities, thus indicating the necessity of more efficient anticorrosion strategies. This study helps to enhance the understanding of the environmental behavior of PW during shale gas collection and provides a scientific reference for the design and formulation of efficient transportation and storage strategies to prevent and control the environmental risk of shale gas-derived PW.
Collapse
Affiliation(s)
- Yufei Ji
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Zhuang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rugang Liao
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Zejun Zhou
- Sinopec Chongqing Fuling Shale Gas Exploration & Development Co. Ltd., Chongqing, 408014, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
15
|
Ferreira ADDF, Coelho DRB, Dos Santos RVG, Nascimento KS, Presciliano FDA, da Silva FP, Campos JC, da Fonseca FV, Borges CP, Weschenfelder SE. Fouling mitigation in produced water treatment by conjugation of advanced oxidation process and microfiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12803-12816. [PMID: 33090345 DOI: 10.1007/s11356-020-11265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
This work explored the use of ozonation and photoperoxidation before the microfiltration process to reduce fouling. Produced water was synthesized with salt, viscosifier, and surfactant. The additives influence on membrane fouling was evaluated. Photoperoxidation process led to an overall better performance than ozonation in terms of oil removal and fouling reduction. The maximum oil removal efficiency was 86%, obtained for emulsions with salt after 2 h of treatment (COD: H2O2 ratio 1:1, UV dose of 965 J/m2). The inclusion of chemical additives impaired the oxidative power of hydroxyl radicals leading to a moderate oil removal; however, they were still able to reduce membrane fouling, mainly in oil/water emulsions with viscosifier. Higher salt concentration promoted fouling resistance and also benefited the permeate quality. Cross-flow microfiltration process integrated with photoperoxidation was able to improve the permeate flux from 84 to 182 L/m2.h after 3 h of exposure to UV radiation, resulting in a permeate with less than 10 mg/L of oil content. Graphical abstract.
Collapse
Affiliation(s)
| | - Déborah Regina Bispo Coelho
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Kleby Soares Nascimento
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Felipe Pereira da Silva
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Valéria da Fonseca
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cristiano Piacsek Borges
- COPPE - Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio Edegar Weschenfelder
- COPPE - Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Petrobras Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Robbins CA, Grauberger BM, Garland SD, Carlson KH, Lin S, Bandhauer TM, Tong T. On-site treatment capacity of membrane distillation powered by waste heat or natural gas for unconventional oil and gas wastewater in the Denver-Julesburg Basin. ENVIRONMENT INTERNATIONAL 2020; 145:106142. [PMID: 33002700 DOI: 10.1016/j.envint.2020.106142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Leveraging waste heat has been considered to have significant potential for promoting the economic feasibility of wastewater treatment in unconventional oil and gas (UOG) production. However, its availability near well sites has not been fully understood and other energy sources may be also feasible. In this work, we quantitatively investigate the viability of using waste heat and well-pad natural gas to power on-site wastewater treatment by membrane distillation (MD) for twenty randomly selected wells located in the Denver-Julesburg (DJ) Basin, U.S. Results show that waste heat produced from on-site electrical loads is insufficient for MD treatment of all the wastewater generated during UOG production (2.2-24.3% of thermal energy required for MD treatment). Waste heat from hydraulic fracturing, which persists only for a short timeframe, is able to meet the full or partial energy requirement during the peak period of wastewater production (17-1005% of thermal energy required for MD treatment within the first two months of production), but this scenario varies among wells and is dependent on the energy efficiency of MD. Compared to waste heat, natural gas is a more consistent energy source. The treatment capacity of MD powered by natural gas at the well pad exceeds full wastewater treatment demands for all the twenty wells, with only two wells requiring short-term wastewater storage. Our work indicates that although waste heat has the potential to reduce the electricity consumption and cost of UOG wastewater treatment, it is unlikely to supply sufficient thermal energy required by MD for long-term treatment. Natural gas can serve as an alternative or complementary energy resource. Further investigations, in particular techno-economic analyses, are needed to identify the best suitable energy source or combination for on-site UOG wastewater treatment.
Collapse
Affiliation(s)
- Cristian A Robbins
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Brandi M Grauberger
- REACH Co-Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Shane D Garland
- REACH Co-Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Kenneth H Carlson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37212, United States
| | - Todd M Bandhauer
- REACH Co-Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, United States.
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
17
|
Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121036. [PMID: 31473516 DOI: 10.1016/j.jhazmat.2019.121036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
The role of natural gas in mitigating greenhouse gas emissions and advancing renewable energy resource integration is undoubtedly critical. With the progress of hydrocarbons exploration and production, the target zones become deeper and the possibility of mercury contamination increases. This impacts on the industry from health and safety risks, due to corrosion and contamination of equipment, to catalyst poisoning and toxicity through emissions to the environment. Especially mercury embrittlement, being a significant problem in LNG plants using aluminum cryogenic heat exchangers, has led to catastrophic plant incidents worldwide. The aim of this review is to critically discuss the conventional and alternative materials as well as the processes employed for mercury removal during gas processing. Moreover, comments on studies examining the geological occurrence of mercury species are included, the latest developments regarding the detection, sampling and measurement are presented and updated information with respect to mercury speciation and solubility is displayed. Clean up and passivation techniques as well as disposal methods for mercury-containing waste are also explained. Most importantly, the environmental as well as the health and safety implications are addressed, and areas that require further research are pinpointed.
Collapse
Affiliation(s)
- Anastasios Chalkidis
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Deshetti Jampaiah
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Patrick G Hartley
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia; CSIRO Energy, Private Bag 10, Clayton South, VIC, 3169, Australia
| | - Ylias M Sabri
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
18
|
Clarke CJ, Bui-Le L, Corbett PJ, Hallett JP. Implications for Heavy Metal Extractions from Hyper Saline Brines with [NTf2]− Ionic Liquids: Performance, Solubility, and Cost. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Coby J. Clarke
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Liem Bui-Le
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Paul J. Corbett
- Shell International Limited, 40 Bank Street, London E14 5AB, U.K
| | - Jason P. Hallett
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
19
|
Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL. Development of novel hydrophilic ionic liquid membranes for the recovery of biobutanol through pervaporation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109618. [PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
Collapse
Affiliation(s)
- Zabia Sajjad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 8, Perak, Malaysia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
20
|
Tanveer S, Chen C. A comprehensive thermodynamic model for high salinity produced waters. AIChE J 2019. [DOI: 10.1002/aic.16818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sheik Tanveer
- Department of Chemical Engineering Texas Tech University Lubbock Texas
| | - Chau‐Chyun Chen
- Department of Chemical Engineering Texas Tech University Lubbock Texas
| |
Collapse
|
21
|
Chang H, Liu B, Wang H, Zhang SY, Chen S, Tiraferri A, Tang YQ. Evaluating the performance of gravity-driven membrane filtration as desalination pretreatment of shale gas flowback and produced water. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117187] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
de Barros Caetano VCL, da Costa Cunha G, Oliveira RVM, da Rosa Alexandre M, Romão LPC. Magnetic hybrid support for ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from produced water. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Carrero-Parreño A, Reyes-Labarta JA, Salcedo-Díaz R, Ruiz-Femenia R, Onishi VC, Caballero JA, Grossmann IE. Holistic Planning Model for Sustainable Water Management in the Shale Gas Industry. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alba Carrero-Parreño
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - Juan A. Reyes-Labarta
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
- Department of Chemical Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - Raquel Salcedo-Díaz
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
- Department of Chemical Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - Rubén Ruiz-Femenia
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
- Department of Chemical Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - Viviani C. Onishi
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - José A. Caballero
- Institute of Chemical Process Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
- Department of Chemical Engineering, University of Alicante, Apartado de Correos 99, Alicante 03080, Spain
| | - Ignacio E. Grossmann
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Chen See JR, Ulrich N, Nwanosike H, McLimans CJ, Tokarev V, Wright JR, Campa MF, Grant CJ, Hazen TC, Niles JM, Ressler D, Lamendella R. Bacterial Biomarkers of Marcellus Shale Activity in Pennsylvania. Front Microbiol 2018; 9:1697. [PMID: 30116227 PMCID: PMC6083035 DOI: 10.3389/fmicb.2018.01697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
Unconventional oil and gas (UOG) extraction, also known as hydraulic fracturing, is becoming more prevalent with the increasing use and demand for natural gas; however, the full extent of its environmental impacts is still unknown. Here we measured physicochemical properties and bacterial community composition of sediment samples taken from twenty-eight streams within the Marcellus shale formation in northeastern Pennsylvania differentially impacted by hydraulic fracturing activities. Fourteen of the streams were classified as UOG+, and thirteen were classified as UOG- based on the presence of UOG extraction in their respective watersheds. One stream was located in a watershed that previously had UOG extraction activities but was recently abandoned. We utilized high-throughput sequencing of the 16S rRNA gene to infer differences in sediment aquatic bacterial community structure between UOG+ and UOG- streams, as well as correlate bacterial community structure to physicochemical water parameters. Although overall alpha and beta diversity differences were not observed, there were a plethora of significantly enriched operational taxonomic units (OTUs) within UOG+ and UOG- samples. Our biomarker analysis revealed many of the bacterial taxa enriched in UOG+ streams can live in saline conditions, such as Rubrobacteraceae. In addition, several bacterial taxa capable of hydrocarbon degradation were also enriched in UOG+ samples, including Oceanospirillaceae. Methanotrophic taxa, such as Methylococcales, were significantly enriched as well. Several taxa that were identified as enriched in these samples were enriched in samples taken from different streams in 2014; moreover, partial least squares discriminant analysis (PLS-DA) revealed clustering between streams from the different studies based on the presence of hydraulic fracturing along the second axis. This study revealed significant differences between bacterial assemblages within stream sediments of UOG+ and UOG- streams and identified several potential biomarkers for evaluating and monitoring the response of autochthonous bacterial communities to potential hydraulic fracturing impacts.
Collapse
Affiliation(s)
- Jeremy R Chen See
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Nikea Ulrich
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | | | - Vasily Tokarev
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Justin R Wright
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Maria F Campa
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Terry C Hazen
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jonathan M Niles
- Freshwater Research Initiative, Susquehanna University, Selinsgrove, PA, United States
| | - Daniel Ressler
- Department of Earth and Environmental Sciences, Susquehanna University, Selinsgrove, PA, United States
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, United States
| |
Collapse
|
25
|
Casey JA, Goldman-Mellor S, Catalano R. Association between Oklahoma earthquakes and anxiety-related Google search episodes. Environ Epidemiol 2018; 2:e016. [PMID: 33210070 PMCID: PMC7660979 DOI: 10.1097/ee9.0000000000000016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Oklahoma has experienced a rise in seismicity since 2010, with many earthquakes induced by wastewater injection. While large single earthquakes have documented mental health repercussions, health implications of these new, frequent earthquakes remain unknown. We aimed to examine associations between Oklahoma earthquakes and statewide anxiety measured by Google queries. METHODS The U.S. Geologic Survey's Advanced National Seismic System Comprehensive Catalog supplied earthquake dates and magnitudes. We used the Google Health application programming interface to compile the proportion of weekly Oklahoma-based health-related search episodes for anxiety. A quasi-experimental time-series analysis from January 2010 to May 2017 evaluated monthly counts of earthquakes ≥ magnitude 4 (a level felt by most people) in relation to anxiety, controlling for US-wide anxiety search episodes and Oklahoma-specific health-related queries. RESULTS Oklahoma experienced an average of two (SD = 2) earthquakes ≥ magnitude 4 per month during the study period. For each additional earthquake ≥ magnitude 4, the proportion of Google search episodes for anxiety increased by 1.3% (95% confidence interval = 0.1%, 2.4%); 60% of this increase persisted for the following month. In months with 2 or more ≥ magnitude 4 earthquakes, the proportion of Google search episodes focused on anxiety increased by 5.8% (95% confidence interval = 2.3%, 9.3%). In a sub-analysis, Google search episodes for anxiety peaked about 3 weeks after ≥ magnitude 4 quakes. CONCLUSIONS These findings suggest that the recent increase in Oklahoma earthquakes has elicited a psychological response that may have implications for public health and regulatory policy.
Collapse
Affiliation(s)
- Joan A. Casey
- School of Public Health, University of California at Berkeley, Berkeley, California
| | - Sidra Goldman-Mellor
- School of Social Sciences, Humanities, and Arts, University of California at Merced, Merced, California
| | - Ralph Catalano
- School of Public Health, University of California at Berkeley, Berkeley, California
| |
Collapse
|