1
|
Kong Z, Wang Z, Lu X, Song Y, Yuan Z, Hu S. Significant in situ sludge yield reduction in an acidic activated sludge system. WATER RESEARCH 2024; 261:122042. [PMID: 38986284 DOI: 10.1016/j.watres.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, PR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Dai Q, Yang X, Gao W, Liao G, Wang D, Zhang W. Effect of incubation temperature on identification of key odorants of sewage sludge using headspace GC analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124189. [PMID: 38776995 DOI: 10.1016/j.envpol.2024.124189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Currently, headspace gas chromatography-mass spectrometry is a widely used method to identify the key odorants of sludge. However, the effect of incubation temperature on the generation and emission of key odorants from sludge was still uncertain. Thus, in this paper, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-coupled ion mobility spectrometry (HS-GC-IMS) were carried out to analyze the volatiles emitted from the sludge incubated at different temperatures (30 °C, 50 °C, 60 °C, and 80 °C). The results indicated that the total volatile concentration of the sludge increased with temperatures, which affected the identified proportion of sludge key odorants to a certain extent. Differently from the aqueous solutions, the variation of volatile emission from the sludge was inconsistent with temperature changes, suggesting a multifactorial influence of incubation temperature on the identification of sludge odorants. The microbial community structure and adenosine triphosphate (ATP) metabolic activity of the sludge samples were analyzed at the initial state, 30 °C, and 80 °C. Although no significant effect of incubation temperature on the microbial community structure of the sludge, the incubation at 80 °C led to a noticeable decrease in microbial ATP metabolic activity, accompanied by a significant change in the proportion of odor-related microorganisms with low relative abundances. Changes in the composition and activity of these communities jointly contributed to the differences in odor emission from sludge at different temperatures. In summary, the incubation temperature affects the production and emission of volatiles from sludge through physicochemical and biochemical mechanisms, by which the microbial metabolism playing a crucial role. Therefore, when analyzing the key odorants of sludge, these factors should be considered.
Collapse
Affiliation(s)
- Qiaoyun Dai
- College of Environment, China University of Geoscience (Wuhan), Wuhan, 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta (Yiwu) Research Center for Eco-Environmental Sciences, Yiwu, 322000, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta (Yiwu) Research Center for Eco-Environmental Sciences, Yiwu, 322000, China.
| | - Wei Gao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Yangtze River Delta (Yiwu) Research Center for Eco-Environmental Sciences, Yiwu, 322000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiying Liao
- Faculty of Materials Science and Chemistry China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Dongsheng Wang
- College of Environment, China University of Geoscience (Wuhan), Wuhan, 430074, China; Yangtze River Delta (Yiwu) Research Center for Eco-Environmental Sciences, Yiwu, 322000, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhang
- College of Environment, China University of Geoscience (Wuhan), Wuhan, 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Coelmont T, Van Gaelen P, Smets I. Quantification of hydrolysis activity in a biological wastewater treatment context. Appl Microbiol Biotechnol 2023; 107:2143-2153. [PMID: 36929187 DOI: 10.1007/s00253-023-12465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
This paper reviews currently available methods for hydrolysis activity monitoring of the most commonly encountered enzyme categories in biological wastewater treatment. While highlighting the relevant methods for protein, lipid, carbohydrate, organic phosphate, and ester hydrolysis, the discussion of their pros and cons is predominantly aimed at revealing the relevance of the to-be-hydrolyzed substrates that are used in the methods. These "substrates" should mimic the proteins, lipids, or other polymers that are present in the wastewater and are in the reviewed methods (i) real substrates (i.e., naturally present in the wastewater), (ii) chromogenic substrates, or (iii) fluorogenic substrates. We conclude that exploiting relevant substrates such as casein or starch, containing fluorophores, has the highest potential for meaningful high throughput hydrolysis quantification and that lipase activity monitoring is still cumbersome. Monitoring the hydrolysis activity in biological wastewater treatment systems is an underdeveloped area. With this review, which aims at providing a condensed and practice-oriented overview, we hope to facilitate the start or continuation of such monitoring. This monitoring will only grow in importance, given the transition from wastewater treatment plants towards water resource recovery facilities. KEY POINTS: • Colorimetric-based methods are vulnerable to sludge matrix interference. • Bonds in p-nitrophenol-based methods are not representative for the targeted substrates. • Direct methods with relevant/real substrates are preferred. • Fluorophore-containing (real) substrates enable high throughput screening.
Collapse
Affiliation(s)
- Toon Coelmont
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium
| | - Pieter Van Gaelen
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium
| | - Ilse Smets
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F Box 2424, B-3001, Leuven, Belgium.
| |
Collapse
|
4
|
Alvim CB, Ferrer-Polonio E, Bes-Piá MA, Mendoza-Roca JA, Fernández-Navarro J, Alonso-Molina JL, Amorós-Muñoz I. Effect of polystyrene nanoplastics on the activated sludge process performance and biomass characteristics. A laboratory study with a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117131. [PMID: 36586326 DOI: 10.1016/j.jenvman.2022.117131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The fate and presence of nanoplastics in wastewater treatment systems is a topic of increasing interest. Furthermore, challenges related to their quantification and identification have made it difficult to set up experimental conditions and compare results between studies. In this study, the effect of 100 nm polystyrene nanoplastics on activated sludge was evaluated. A concentration of 2 μg/L was used to continuously feed a sequencing batch reactor (SBR-NPs). Under the experimental conditions used in this study, no changes were observed in the process performance of the SBR-NPs compared to the reactor used as a control. Neither nitrification nor organic matter removal efficiency, which was 96% for both SBRs, were affected by the presence of 100 nm polystyrene nanoplastics, which suggests that the tested nanoplastics were not sufficiently toxic to the biomass. Although no significant differences in the relative abundances of predominant phyla between SBR-Control and SBR-NPs were observed, a slight shift in the relative abundance of Patescibacteria (1.5 ± 0.6% and 3.7 ± 0.8% in SBR-Control and SBR-NPs, respectively, at the end of the test) occurred. The higher abundance of this phylum in SBR-NPs compared to SBR-Control may suggest that these bacteria have some sensitivity to the presence of 100 nm polystyrene nanoplastics. Furthermore, even with the absence of nitrification inhibition, it was observed stagnation of the growth of Nitrotoga bacteria in SBR-NPs, which also suggests that the polystyrene nanoplastics could have an inhibitory effect on these cells and an impact on nitrification in the long term.
Collapse
Affiliation(s)
- C Bretas Alvim
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - E Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - M A Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain
| | - J A Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera, S/n, Valencia 46022, Spain.
| | - J Fernández-Navarro
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| | - J L Alonso-Molina
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| | - I Amorós-Muñoz
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
5
|
Corsino SF, Carabillò M, Cosenza A, De Marines F, Di Trapani D, Traina F, Torregrossa M, Viviani G. Insights on mechanisms of excess sludge minimization in an oxic-settling-anaerobic process under different operating conditions and plant configurations. CHEMOSPHERE 2023; 312:137090. [PMID: 36334748 DOI: 10.1016/j.chemosphere.2022.137090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/08/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered. Five periods (P1-P5) were studied, during which several operating conditions and configurations were tested. Specifically, the hydraulic retention time (HRT) in the anaerobic reactor of the OSA system (P1 8 h, P2-P3 12 h, P4 8 h, P5 12 h) and the return sludge from the anaerobic to the anoxic (scheme A) (P1-P2) or aerobic (scheme B) mainstream reactors (P3-P5) were investigated. The results highlighted that the excess sludge production in the OSA was lower in all the configurations (12-41%). In more detail, the observed yield (Yobs) was reduced from 0.50-0.89 gTSS gCOD-1 (control) to 0.22 -0.34 gTSS gCOD-1 in the OSA process. The highest excess sludge reduction (40%) was achieved when the OSA was operated according to scheme B and HRT of 12 h in the anaerobic reactor (P3). Generally, scheme A enabled the establishment of cell lysis and extracellular polymeric substances (EPS) destructuration, leading to a worsening of process performances when high anaerobic HRT (>8 h) was imposed. In contrast, scheme B enabled the establishment of maintenance metabolism in addition to the uncoupling metabolism, while cell lysis and EPS destruction were minimized. This allowed obtaining higher sludge reduction yield without compromising the effluent quality.
Collapse
Affiliation(s)
- Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy.
| | - Michele Carabillò
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Alida Cosenza
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Federica De Marines
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Daniele Di Trapani
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Francesco Traina
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Michele Torregrossa
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale Delle Scienze, Building 8, 90128, Palermo, Italy
| |
Collapse
|
6
|
Zhang Q, Lin L, Chen Y, Cao W, Zhang Y. Effects of hydroxylamine on treatment of anaerobic digestate of pig manure in partial nitrification-anaerobic ammonium oxidation. BIORESOURCE TECHNOLOGY 2022; 363:128015. [PMID: 36155814 DOI: 10.1016/j.biortech.2022.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Partial nitrification-anaerobic ammonium oxidation (PN-anammox) was started up within 40 days by bioaugmentation and aeration control, and its performance in the treatment of anaerobic digestate of pig manure (ADPM) was evaluated. Inhibitors in ADPM decreased the nitrogen removal rate (NRR) by 0.24 g N/L/d. The effect and mechanism of hydroxylamine (NH2OH) alleviation of PN-anammox inhibition during ADPM treatment were investigated. As an intermediate product of anammox and ammonia-oxidizing bacteria, NH2OH strengthened energy metabolism, improved the activity and abundance of functional bacteria, and eliminated miscellaneous bacteria, increasing the average NRR by 31%. However, the average nitrous oxide emission was increased by 10.1% via hydroxylamine oxidation. The results showed that synergy and competition among nitrogen-transforming microorganisms were crucial for NRR and that NH2OH played an essential role in maintaining efficient operation. This study lays a foundation for restoring PN-anammox for treating livestock wastewater.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Lan Lin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuqi Chen
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Wang SN, Fang F, Li KY, Yue YR, Xu RZ, Luo JY, Ni BJ, Cao JS. Sludge reduction and microbial community evolution of activated sludge induced by metabolic uncoupler o-chlorophenol in long-term anaerobic-oxic process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115230. [PMID: 35537269 DOI: 10.1016/j.jenvman.2022.115230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Excess sludge management is a restrictive factor for the development of municipal wastewater treatment plants. The addition of metabolic uncouplers has been proven to be effective in sludge reduction. However, the long-term effect of metabolic uncoupler o-chlorophenol (oCP) on the biological wastewater treatment system operated in anaerobic-oxic mode is still unclear. To this end, two parallel reactors operated in anaerobic-oxic mode with and without 10 mg/L of oCP addition were investigated for 91 days. The results showed that 56.1 ± 2.3% of sludge reduction was achieved in the oCP-added system, and the nitrogen and phosphorus removal ability were negatively affected. Dosing oCP stimulated the formation of microbial products and increased the DNA concentration, but resulted in a decrease in the electronic transport activity of activated sludge. Microbial community analysis further demonstrated that a significant reduction of bacterial richness and diversity occurred after oCP dosing. However, after stopping oCP addition, the pollutant removal ability of activated sludge was gradually increased, but the sludge yield, as well as species richness and diversity, did not recover to the previous level. This study will provide insightful guidance on the long-term application of metabolic uncouplers in the activated sludge system.
Collapse
Affiliation(s)
- Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ke-Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ying-Rong Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Ding A, Lin W, Chen R, Ngo HH, Zhang R, He X, Nan J, Li G, Ma J. Improvement of sludge dewaterability by energy uncoupling combined with chemical re-flocculation: Reconstruction of floc, distribution of extracellular polymeric substances, and structure change of proteins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151646. [PMID: 34774632 DOI: 10.1016/j.scitotenv.2021.151646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
This study innovatively combines energy uncoupling and chemical re-flocculation helped to accelerate residual sludge dewatering. Ferric chloride (FeCl3) and 3, 3', 4', 5-tetrachlor-osalicylanilide (TCS) were employed as the flocculant and uncoupler, respectively. The results showed that the specific resistance to filtration (SRF) and the water content of sludge filtered cake fell dramatically from 11 × 1012 m/kg and 80.2% to 1.1 × 1012 m/kg and 77.1% respectively, when the addition of TCS ranged from 0 to 0.12 g/g VSS with flocculation conditioning. The distribution of sludge extracellular polymeric substance (EPS) was altered radically after adding TCS, leading to the collapse and fragmentation of EPS, causing the reduction and formation of fragmentized sludge flocs. Meanwhile, the stretching and deformation vibrations of CO and NH bonds suggested the strong attack between TCS and EPS proteins, while variations of the main secondary structures of protein (i.e. α-helix, β-sheet and random coil) indicated the loose structure of proteins and enhanced hydrophobicity. Consequently, the cracked and loose structure of residual sludge resulted in the release of bound water. After TCS addition combined with chemical re-flocculation, the channels of sludge water discharge were widened, guaranteeing the discharge of sludge water. Therefore, the sludge dewaterability was elevated under the energy uncoupling combined with chemical re-flocculation. As well, the application of TCS would not destroy sludge cells, in which bioenergy (sludge carbon source) could be retained and effectively utilized in the subsequent disposal process. The findings reported here not only widen our perception of the energy uncoupling technology, but also encourage researchers to explore both effective and economic methods on the basis of energy uncoupling, aiming to achieve high-efficiency of reduction and dewatering in the future.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China.
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Renglu Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Rourou Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, PR China
| |
Collapse
|
9
|
Lin W, Ding A, Ngo HH, Ren Z, Nan J, Li G, Ma J. Effects of the metabolic uncoupler TCS on residual sludge treatment: Analyses of the microbial community and sludge dewaterability potential. CHEMOSPHERE 2022; 288:132473. [PMID: 34624348 DOI: 10.1016/j.chemosphere.2021.132473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Residual sludge is a by-product with a large volume and complex composition from wastewater treatment plants. It is significant to reduce sludge volume to decrease the negative effects of sludge on environmental pollution and needless land use. We investigated the effects of uncoupler 3, 3', 4', 5-tetrachlorosalicylanilide (TCS) on the properties of sludge. After adding 0.12 g TCS/g VSS with 24 h mixing, the sludge concentration and total ATP content decreased by 51.1% and 60.8%, respectively. At the same time, the microbial community also changed significantly, leading to the decrease of richness and diversity. Additionally, the secretion of extracellular polymeric substances (EPS) reduced approximately 43% under the addition of 0.12 g/g VSS compared with the control. The decrement of EPS may be explained by the decreased relative abundance of functional bacteria (i.e. Chloroflexi reduced about 60% and Nitrospirota reduced about 31%). Notably, the addition of TCS before coagulation conditioning (FeCl3) promoted the adhesion of sludge flocs according to the theory of Extended Derjaguin Landau Verwey Overbee (XDLVO), leading to the increased hydrophobicity of the residual sludge. Therefore, energy uncoupling has the potential of improving sludge dewaterability.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| |
Collapse
|
10
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Gatidou G, Chatzopoulos P, Chhetri RK, Kokkoli A, Giannakopoulos A, Andersen HR, Stasinakis AS. Ecotoxicity and biodegradation of the bacteriostatic 3,3',4',5-tetrachlorosalicylanilide (TSCA) compared to the structurally similar bactericide triclosan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144960. [PMID: 33477039 DOI: 10.1016/j.scitotenv.2021.144960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
This article studies the ecotoxicity of 3,3',4',5-tetrachlorosalicylanilide (TCSA) using different bioassays and examines its fate in activated sludge batch experiments. Despite of the common use of TCSA as chemical uncoupler in wastewater treatment systems and as preservative in several products, limited data has been published for its ecotoxicity, while no information is available for its biodegradation. Among different bioassays, the highest toxicity of TSCA was noticed for Daphna magna (48-h LC50: 0.054 mg L-1), followed by Vibrio fischeri (15-min EC50: 0.392 mg L-1), Lemna minor, (7-d EC50: 5.74 mg L-1) and activated sludge respiration rate (3-h EC50: 31.1 mg L-1). The half-life of TSCA was equal to 7.3 h in biodegradation experiments with activated sludge, while use of mass balances showed that 90% of this compound is expected to be removed in an aerobic activated sludge system, mainly due to biodegradation. A preliminary risk assessment of TSCA using the Risk Quotient methodology showed possible ecological threat in rivers where wastewater is diluted up to 100-fold. Comparison with the structurally similar 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan, TCS) showed that both compounds have similar biodegradation potential and seem to cause analogous toxicity to Vibrio fischeri and activated sludge. Specifically, TCS was biodegraded quite rapidly by activated sludge (half-life: 6.2 h), while EC50 values equal to 0.134 mg L-1 and 39.9 mg L-1 were calculated for Vibrio fischeri, and activated sludge respiration rate. Future research should focus on monitoring of TSCA concentrations in the environment and study its effects in long-term toxicity and bioaccumulation tests.
Collapse
Affiliation(s)
- Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece.
| | - Paschalis Chatzopoulos
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, Kgs. Lyngby 2800, Denmark
| | - Argyro Kokkoli
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, Kgs. Lyngby 2800, Denmark
| | - Andreas Giannakopoulos
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, Kgs. Lyngby 2800, Denmark
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
12
|
Ferrer-Polonio E, Fernández-Navarro J, Alonso-Molina JL, Bes-Piá A, Amorós I, Mendoza-Roca JA. Changes in the process performance and microbial community by addition of the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide in sequencing batch reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133726. [PMID: 31400674 DOI: 10.1016/j.scitotenv.2019.133726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
A complete study about the effects of 3,3',4',5-tetrachlorosalicylanilide (TCS) on organic matter elimination performance, sludge production and on the microbial community of a biological wastewater treatment process has been performed. For this purpose two sequencing batch reactors (SBR) worked in parallel for 43 days with 0.8 mg·L-1 of TCS (SBR-1) and without this metabolic uncoupler (SBR-2). Results indicated that 63.3% of sludge reduction was achieved in SBR-1. However, COD removal efficiency was maintained in similar values in both reactors (89.1% and 92.1% in SBR-1 and SBR-2, respectively). The exhaustive mixed liquor characterization led to know deeply the action mechanism of TCS. In this way, a 69% of adenosine triphosphate (ATP) reduction was observed in SBR-1 in comparison with values measured in SBR-2. On the contrary, an increase in soluble microbial products (SMP) and DNA concentrations occurred as a consequence of TCS addition. Thus, it could be concluded that sludge reduction due to TCS addition was due to both uncoupling effect and cellular lysis. Also, increase in all microbial hydrolytic enzymatic activities measured was observed, which explained the stable performance achieved in SBR-1 despite to the results explained above. It should be highlighted that this uncoupler should not be used in biological treatments that require nitrogen elimination because nitrifying bacteria were affected by its addition (Nitrosomonas and Nitrospira). Finally, the 16S rRNA gene amplicon sequencing informed that an important reduction of bacterial diversity resulted in SBR-1 due to TCS addition.
Collapse
Affiliation(s)
- Eva Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Julian Fernández-Navarro
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Luis Alonso-Molina
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Amparo Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Inmaculada Amorós
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Antonio Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
13
|
Zheng Y, Zhou Z, Ye X, Huang J, Jiang L, Chen G, Chen L, Wang Z. Identifying microbial community evolution in membrane bioreactors coupled with anaerobic side-stream reactor, packing carriers and ultrasonication for sludge reduction by linear discriminant analysis. BIORESOURCE TECHNOLOGY 2019; 291:121920. [PMID: 31382094 DOI: 10.1016/j.biortech.2019.121920] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactor (AO-MBR), an anaerobic side-stream reactor (ASSR) coupled MBRs (A-MBRs), an A-MBR with carriers packed in ASSR (AP-MBR) and an AP-MBR with sludge ultrasonicated before ASSR (AUP-MBR) were operated for 261 d to investigate effects of ASSR, packing carriers and ultrasonication on sludge reduction and microbial population. Sludge reduction efficiencies of A-MBR, AP-MBR and AUP-MBR were 36.2%, 46.4% and 51.4%, respectively. Packing carriers and ultrasonication both enhanced hydrolysis by stimulating activities of α-glucosidase and protease, while uncoupling metabolism was enhanced greatly by packing carriers but slightly by ultrasonication. Linear discriminant analysis of effect size (LEfSe) results showed that packing carriers promoted the growth of hydrolytic and fermentative bacteria in bulk sludge, and enriched anaerobes and fermentative bacteria on the surface of carriers. Ultrasonication screened ultrasonication-resistant bacteria, and created an anaerobic environment beneficial to hydrolytic and fermentative bacteria.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaofang Ye
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lingyan Jiang
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Liuyu Chen
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
14
|
Mahdavianpour M, Moussavi G, Farrokhi M. Biodegradation and COD removal of p -Cresol in a denitrification baffled reactor: Performance evaluation and microbial community. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|