1
|
Yang R, Bai F, Mei L, Guo W, Qiao H, Chen G, Liu J, Ke F, Peng C, Hou R, Wan X, Cai H. Zirconium‑cerium modified polyvinyl alcohol/NaCMC biocomposite film: Synthesis of films through high-speed shear assisted technique and removal fluoride from water. Carbohydr Polym 2024; 339:122239. [PMID: 38823909 DOI: 10.1016/j.carbpol.2024.122239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
A new zirconium and cerium-modified polyvinyl alcohol (PVA) sodium carboxymethyl cellulose (NaCMC) film (PVA/CMC-Zr-Ce) was synthesized thru a high-speed shear-assisted method and its adsorption for the removal of fluoride was studied, in which the NaCMC provided -COONa for ion exchange between Na and Zr-Ce, thus the loading amount of Zr-Ce on films was accordingly increased. The morphology and structure of PVA/CMC-Zr-Ce were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Besides, the mechanical properties, water contact angle, and swelling ratio of film were also evaluated. The addition of high-speed shear improved the dispersion of the emulsion system, and PVA/CMC-Zr-Ce film with good adsorption performance and film stability was prepared. While, it was found that the adsorption capacity could reach 67.25 mg/g and equilibrium time could reach 20 min. The adsorption mechanism of PVA/CMC-Zr-Ce revealed that ion exchange between hydroxide and fluoride, electrostatic interactions and complexation were the dominating influencing factors. Based on these findings, it can be concluded that PVA/CMC-Zr-Ce film- synthesized with high-speed shear assistance technique is a promising adsorbent for fluoride removal from water.
Collapse
Affiliation(s)
- Ruirui Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Fuqing Bai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Liping Mei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Huanhuan Qiao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei 230601, PR China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
2
|
Gasparotto JM, Pinto D, de Paula N, Maraschin M, Franco DSP, Carissimi E, Foletto EL, Jahn SL, Silva LFO, Dotto GL. Preparation of alumina-supported Fe-Al-La composite for fluoride removal from an aqueous matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42416-42426. [PMID: 36646979 DOI: 10.1007/s11356-023-25231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L-1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L-1. A maximum adsorption capacity of 8.17 mg g-1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min-1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl-, SO42-, and NO3- was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.
Collapse
Affiliation(s)
- Juliana M Gasparotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Diana Pinto
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Natalie de Paula
- Univerdidad de La Costa, CUC, Calle 58 # 55-56, 080002, Barranquilla, Atlántico, Colombia
| | - Manoel Maraschin
- Univerdidad de La Costa, CUC, Calle 58 # 55-56, 080002, Barranquilla, Atlántico, Colombia
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Elvis Carissimi
- Univerdidad de La Costa, CUC, Calle 58 # 55-56, 080002, Barranquilla, Atlántico, Colombia
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Sergio L Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Luis F O Silva
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
3
|
Jian S, Chen Y, Shi F, Liu Y, Jiang W, Hu J, Han X, Jiang S, Yang W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers (Basel) 2022; 14:polym14245417. [PMID: 36559784 PMCID: PMC9784745 DOI: 10.3390/polym14245417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The occurrence of fluoride contamination in drinking water has gained substantial concern owing to its serious threat to human health. Traditional adsorbents have shortcomings such as low adsorption capacity and poor selectivity, so it is urgent to develop new adsorbents with high adsorption capacity, renewable and no secondary pollution. In this work, magnetic electrospun La-Mn-Fe tri-metal oxide nanofibers (LMF NFs) for fluoride recovery were developed via electrospinning and heat treatment, and its defluoridation property was evaluated in batch trials. Modern analytical tools (SEM, BET, XRD, FTIR) were adopted to characterize the properties of the optimized adsorbent, i.e., LMF11 NFs with a La:Mn molar ratio of 1:1. The surface area calculated via BET method and pHpzc assessed using pH drift method of LMF11 NFs were 55.81 m2 g-1 and 6.47, respectively. The results indicated that the adsorption amount was highly dependent on the pH of the solution, and reached the highest value at pH = 3. The kinetic behavior of defluoridation on LMF11 NFs was dominated by the PSO model with the highest fitted determination coefficients of 0.9999. Compared with the other three isotherm models, the Langmuir model described defluoridation characteristics well with larger correlation coefficients of 0.9997, 0.9990, 0.9987 and 0.9976 at 15 °C, 25 °C, 35 °C and 45 °C, respectively. The optimized LMF11 NFs exhibited superior monolayer defluoridation capacities for 173.30-199.60 mg F-/g at pH 3 at 15-45 °C according to the Langmuir isotherm model. A thermodynamic study proved that the defluoridation by LMF11 NFs is a spontaneous, endothermic along with entropy increase process. In addition, the LMF11 NFs still showed high defluoridation performance after three reused cycles. These findings unveil that the synthesized LMF11 NFs adsorbent is a good adsorbent for fluoride remediation from wastewater owing to its low cost, high defluoridation performance and easy operation.
Collapse
Affiliation(s)
- Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Yuhuang Chen
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Fengshuo Shi
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Yifei Liu
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wenlong Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| | - Xiaoshuai Han
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| |
Collapse
|
4
|
Aigbe UO, Osibote OA. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9640-9684. [PMID: 34997491 DOI: 10.1007/s11356-021-17571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Fluoride is an anionic pollutant found superfluous in surface or groundwater as a result of anthropogenic actions from improper disposal of industrial effluents. In drinking water, superfluous fluoride has been revealed to trigger severe health problems in humans. Hence, developing a comprehensive wastewater decontamination process for the effective management and preservation of water contaminated with fluoride is desirable, as clean water demand is anticipated to intensify considerably over the upcoming years. In this regard, there have been increased efforts by researchers to create novel magnetic metal oxide nanocomposites which are functionalized for the remediation of wastewater owing to their biocompatibility, cost-effectiveness, relative ease to recover and reuse, non-noxiousness, and ease to separate from solutions using a magnetic field. This review makes an all-inclusive effort to assess the effects of experimental factors on the sorption of fluoride employing magnetic metal oxide nanosorbents. The removal efficiency of fluoride ions onto magnetic metal oxides nanocomposites were largely influenced by the solution pH and ions co-existing with fluoride. Overall, it was noticed from the reviewed researches that the maximum sorption capacity using various metal oxides for fluoride sorption was in the order of aluminium oxides >cerium oxides > iron oxides > magnesium oxides> titanium oxides, and most sorption of fluoride ions was inhibited by the existence of phosphate trailed by sulphate. The mechanism of fluoride sorption onto various sorbents was due to ion exchange, electrostatic attraction, and complexation mechanism.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
5
|
Yang W, Shi F, Jiang W, Chen Y, Zhang K, Jian S, Jiang S, Zhang C, Hu J. Outstanding fluoride removal from aqueous solution by a La-based adsorbent †. RSC Adv 2022; 12:30522-30528. [PMID: 36337969 PMCID: PMC9597601 DOI: 10.1039/d2ra06284d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water. The obtained adsorbent was lanthanum methanoate (La(COOH)3). The effects of pH value, initial F− concentration and interfering ions on defluoridation properties of as-prepared La(COOH)3 were assessed through batch adsorption tests. The adsorption kinetics, isotherm models and thermodynamics were employed to verify the order, nature and feasibility of La(COOH)3 towards fluoride removal. The results imply that La(COOH)3 is preferable for defluoridation over a wide pH range of 2 to 9 without interference. Simultaneously, the defluoridation process of La(HCOO)3 accords to the pseudo-second order model and Langmuir isotherm, revealing chemical adsorption is the main control step. The maximum fluoride capture capacities of La(COOH)3 at 30, 40 and 50 °C are 245.02, 260.40 and 268.99 mg g−1, respectively. The mechanism for defluoridation by La(COOH)3 was revealed by PXRD and XPS. To summarize, the as-synthesized La based adsorbent could serve as a promising adsorbent for defluoridation from complex fluoride-rich water. A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water.![]()
Collapse
Affiliation(s)
- Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Fengshuo Shi
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Wenlong Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Yuhuang Chen
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Kaiyin Zhang
- College of Mechanical and Electrical Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry UniversityNanjing 210037China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| |
Collapse
|
6
|
Al Mesfer MK, Danish M, Shah M. Optimization of fluoride adsorption from aqueous solution over mesoporous titania-alumina composites using Taguchi method. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1663. [PMID: 34800338 DOI: 10.1002/wer.1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The optimization of fluoride removal from aqueous media was studied over the mesoporous titania-alumina composites using Taguchi method-based L25 orthogonal array experimental design. The chemical structure, surface chemistry, and morphology of as-prepared composite adsorbents were studied utilizing various analytical methods. The findings of the characterization demonstrated that the produced composites have high textural qualities, which are conducive to enhanced fluoride adsorption. The optimum conditions for maximum percentage removal of fluoride from aqueous solution were found as adsorbent type as TA75, adsorbent dose 4 g L-1 , initial concentration of fluoride 40 ppm, solution pH 3 with a treatment time of 60 min. Under the optimum conditions, 98% of fluoride adsorption was achieved. Analysis of variance revealed that the solution pH followed by the adsorbent dose was the most significant for fluoride adsorption. The Langmuir model and pseudo-second-order kinetic model fit the adsorption data well, and the TA75 adsorbent had a maximum Langmuir fluoride adsorption capacity of 34.48 mg g-1 at pH = 3. The thermodynamic information suggests that the adsorption was spontaneous and endothermic under the given operating conditions. The synergic combination of Ti-Al nanoparticles demonstrated a high percentage removal of fluoride under the optimized operating conditions. PRACTITIONER POINTS: The Taguchi method-based design of the experimental approach was implemented in the fluoride adsorption process. Mesoporous titania-alumina composites with 0 to 100 wt.% of alumina in titania were prepared and applied to remove fluoride from an aqueous solution. Solution pH was the most influential parameter for the fluoride adsorption process, while the synergistic combination of 75 wt.% alumina in titania showed the maximum adsorption capacity.
Collapse
Affiliation(s)
- Mohammed K Al Mesfer
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mohd Danish
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mumtaj Shah
- Chemical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Wan K, Huang L, Yan J, Ma B, Huang X, Luo Z, Zhang H, Xiao T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145535. [PMID: 33588221 DOI: 10.1016/j.scitotenv.2021.145535] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Many industries such as iron and steel metallurgy, copper and zinc smelting, the battery industry, and cement manufacturing industries discharge high concentrations of fluoride-containing wastewater into the environment. Subsequently, the discharge of high fluoride effluent serves as a threat to human life as well as the ecological ability to sustain life. This article analyses the advantages and drawbacks of some fluoride remediation technologies such as precipitation and flocculation, membrane technology, ion exchange technology, and adsorption technology. Among them, adsorption technology is considered the obvious choice and the best applicable technology. As such, several adsorbents with high fluoride adsorption capacity such as modified alumina, metal oxides, biomass, carbon-based materials, metal-organic frameworks, and other adsorption materials including their characteristics have been comprehensively summarized. Additionally, different adsorption conditions of the various adsorbents, such as pH, temperature, initial fluoride concentration, and contact time have been discussed in detail. The study found out that the composite synergy between different materials, morphological and structural control, and the strengthening of their functional groups can effectively improve the ability of the adsorbents for removing fluoride. This study has prospected the direction of various adsorbents for removing fluoride in wastewater, which would serve as guiding significance for future research in the field.
Collapse
Affiliation(s)
- Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Boyan Ma
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhixuan Luo
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
8
|
A Novel and Efficient Metal Oxide Fluoride Absorbent for Drinking Water Safety and Sustainable Development. SUSTAINABILITY 2021. [DOI: 10.3390/su13020883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inefficient and non-environmentally friendly absorbent production can lead to much resource waste and go against low carbon and sustainable development. A novel and efficient Mg-Fe-Ce (MFC) complex metal oxide absorbent of fluoride ion (F−) removal was proposed for safe, environmentally friendly, and sustainable drinking water management. A series of optimization and preparation processes for the adsorbent and batch experiments (e.g., effects of solution pH, adsorption kinetics, adsorption isotherms, effects of coexisting anions, as well as surface properties tests) were carried out to analyze the characteristics of the adsorbent. The results indicated that optimum removal of F− occurred in a pH range of 4–5.5, and higher adsorption performances also happened under neutral pH conditions. The kinetic data under 10 and 50 mg·g−1 were found to be suitable for the pseudo-second-order adsorption rate model, and the two-site Langmuir model was ideal for adsorption isotherm data as compared to the one-site Langmuir model. According to the two-site Langmuir model, the maximum adsorption capacity calculated at pH 7.0 ± 0.2 was 204 mg·g−1. The adsorption of F− was not affected by the presence of sulfate (SO42−), nitrate (NO3−), and chloride (Cl−), which was suitable for practical applications in drinking water with high F− concentration. The MFC adsorbent has an amorphous structure, and there was an exchange reaction between OH− and F−. The novel MFC adsorbent was proven to have higher efficiency, better economy, and environmental sustainability, and be more environmentally friendly.
Collapse
|
9
|
De Silva SM, Deraniyagala S, Walpita JK, Jayaweera I, Diyabalanage S, Cooray AT. Masking Ability of Various Metal Complexing Ligands at 1.0 mM Concentrations on the Potentiometric Determination of Fluoride in Aqueous Samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:6683309. [PMID: 33381350 PMCID: PMC7762639 DOI: 10.1155/2020/6683309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Fluoride is a common anion present in natural waters. Among many analytical methods used for the quantification of fluoride in natural waters, potentiometric analysis is one of the most widely used methods because of minimum interferences from other ions commonly present in natural waters. The potentiometric analysis requires the use of ionic strength adjusting buffer abbreviated as TISAB to obtain accurate and reproducible data. In most of the reported literature, higher concentrations of strong metal chelating ligands are used as masking agents generally in the concentration range of 1.0 to 0.01 M. In the present study, effectiveness of the masking agents, phosphate, citrate, CDTA ((1,2-cyclohexylenedinitrilo)tetraacetic acid), EDTA (ethylenediaminetetraacetic acid) HE-EDTA ((hydroxyethyl)ethylenediaminetriacetic acid)), triethanolamine, and tartaric acid at 1.0 mM in TISAB solutions was investigated. The experimental data were compared with a commercially available WTW 140100 TISAB solution as the reference buffer. According to the experimental data, the reference buffer always produced the highest fluoride concentrations and the measured fluoride concentrations were in the range of 0.611 to 1.956 mg/L. Out of all the masking agents investigated, only CDTA performed marginally well and approximately a quarter of the samples produced statistically comparable data to the reference buffer. All the other masking agents produced significantly low concentrations compared to the reference buffer. The most probable reasons for the underestimation of fluoride concentrations could be shorter decomplexing time and lower masking agent concentrations.
Collapse
Affiliation(s)
- Sakuni M. De Silva
- Instrument Centre, Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Samitha Deraniyagala
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Janitha K. Walpita
- Instrument Centre, Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Indira Jayaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Saranga Diyabalanage
- Instrument Centre, Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Asitha T. Cooray
- Instrument Centre, Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
10
|
Singh S, German M, Chaudhari S, Sengupta AK. Fluoride removal from groundwater using Zirconium Impregnated Anion Exchange Resin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110415. [PMID: 32883481 DOI: 10.1016/j.jenvman.2020.110415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 05/05/2023]
Abstract
Drinking water containing excess fluoride is a major health concern across the globe. The present study reports the feasibility of zirconium impregnated hybrid anion exchange resin (HAIX-Zr) for treating fluoride contaminated groundwater. The HAIX-Zr resin was prepared by impregnating ZrO2 nanoparticles on polymeric anion exchanger resin. Fluoride uptake by HAIX-Zr was quite rapid, 60% removal was obtained within 30 min. Kinetics of fluoride uptake by HAIX-Zr resin followed the pseudo-second-order kinetic model and adsorption data fitted best to Freundlich adsorption isotherm model. Maximum fluoride uptake capacity was observed as 12.0 mg/g. The defluoridation capacity of the resin decreases with increase in solution pH. The co-existing anions like chloride, phosphate, bicarbonate, nitrate, and sulphate at 100 mg/L concentration significantly affected fluoride removal and bicarbonate showed the highest interference. Continuous flow packed bed experiments were performed with real groundwater. To maintain a lower pH, weak acid cation exchange resin (INDION-236) was used before HAIX-Zr. It was observed that reducing the pH of the sample water to 4-4.5, increased the number of treated bed volumes fifteen times. Regeneration of fluoride-containing resin was done by passing 3% NaOH and 3% NaCl solution through an exhausted resin bed. The results revealed that HAIX-Zr can effectively remove fluoride from groundwater.
Collapse
Affiliation(s)
- Sanjay Singh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India.
| | - Michael German
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA.
| | - Sanjeev Chaudhari
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India.
| | - Arup K Sengupta
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, USA.
| |
Collapse
|
11
|
Tao W, Zhong H, Pan X, Wang P, Wang H, Huang L. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121373. [PMID: 31607582 DOI: 10.1016/j.jhazmat.2019.121373] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 05/21/2023]
Abstract
In this paper, Ce-AlOOH were investigated to develop as an adsorbent for removing fluoride. Oxalic acid was selected as an effectively modified reagent to improve the performance of adsorption. Cerium existed in the form of CeO2 and kept good stability during the adsorption process through XRD, TEM, BET, Raman, and Infrared spectra. The adsorption capacity could be improved with the addition of cerium (62.8 mg/g). Specially, the oxalic acid modification significantly promoted the adsorption capacity to 90 mg/g. There adsorption isotherm and kinetics were estimated independently. These adsorption behaviors were in accordance with the Freundlich model and pseudo-second-order model, indicating that chemisorption was the rate-determining step. the obtained adsorbents all exhibited good recycling performance using oxalic acid as the regeneration reagent. The species of tetravalent cerium was the important adsorption sites. The mechanism was carefully explored by XPS analysis. The fluoride adsorption process can be ascribed to the combined effect of the electrostatic action, surface coordination, and ion exchange between M-OH and F-. Furthermore, modification of oxalic acid exhibited a new easier way to quickly increase M-OH content, which contributed to the dominated adsorption sites.
Collapse
Affiliation(s)
- Wen Tao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Xiangbo Pan
- Changsha neptunus pharmaceutical co, ltd, China
| | - Peng Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
12
|
Defluoridation behavior of layered Fe-Mg-Zr hydroxides and its continuous purification of groundwater. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Parashar K, Pillay K, Das R, Maity A. Fluoride Toxicity and Recent Advances in Water Defluoridation with Specific Emphasis on Nanotechnology. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Sarkar C, Basu JK, Samanta AN. Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based geopolymer. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Saikia J, Sarmah S, Saikia P, Goswamee RL. Harmful weed to prospective adsorbent: low-temperature-carbonized Ipomoea carnea stem carbon coated with aluminum oxyhydroxide nanoparticles for defluoridation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:721-737. [PMID: 30414028 DOI: 10.1007/s11356-018-3572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Gainful utilization of stems of the pernicious weed, Ipomoea carnea, to prepare good quality carbon and its modification with aluminum oxyhydroxide (AlOOH) nanoparticles for efficient defluoridation from contaminated drinking water is discussed in this paper. Surface functional groups are enhanced by functionalization of the carbons under acid treatment which acted as anchor to the AlOOH nanoparticles. Formation of AlOOH particles over the carbon surface is confirmed from X-ray diffractometry analysis. The AlOOH-carbon nanocomposite showed higher fluoride removal capacity than the neat AlOOH nanoparticles with a maximum removal capacity in the range of 46.55-53.71 mg g-1. Reaction kinetics and isotherm studies showed that fluoride adsorption is quite feasible on the adsorbent surface. The column study showed the possibility of the adsorbent for large-scale applications. The adsorbent can be regenerated by a mild treatment with 0.1 N NaOH solutions. The adsorbent is highly capable for defluoridation from synthetic as well as fluoride-contaminated natural water and, thus, can be used as an alternative for commercial defluoridation adsorbents. The use of Ipomoea carnea for defluoridation can be a way of producing low-cost adsorbent material, and the use for such purposes may also be helpful to control the weed up to a good extent.
Collapse
Affiliation(s)
- Jitu Saikia
- Advanced Materials Group, Materials Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India
- Academy of Scientific and Innovative Research, Jorhat Campus, Jorhat, India
| | - Susmita Sarmah
- Advanced Materials Group, Materials Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India
- Academy of Scientific and Innovative Research, Jorhat Campus, Jorhat, India
| | - Pinky Saikia
- Advanced Materials Group, Materials Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India
- Academy of Scientific and Innovative Research, Jorhat Campus, Jorhat, India
| | - Rajib Lochan Goswamee
- Advanced Materials Group, Materials Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India.
- Academy of Scientific and Innovative Research, Jorhat Campus, Jorhat, India.
| |
Collapse
|
16
|
Separation and recovery of NaF from fluorine containing solution by the common ion effect of Na . Heliyon 2018; 4:e01029. [PMID: 30582047 PMCID: PMC6299105 DOI: 10.1016/j.heliyon.2018.e01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 12/06/2018] [Indexed: 11/22/2022] Open
Abstract
The separation and recovery of NaF from fluorine containing solution by the common ion effect of Na+ was studied. The solubility of NaF in the solutions of NaCl, NaNO3, Na2CO3, Na2SO4 and NaOH at 30 °C was determined. It was found that when the compound containing sodium, such as Na2CO3 or Na2SO4 was added into NaF saturated solution to product the common ion effect of Na+, most of the NaF can be crystallized without evaporating concentration, and the added Na2CO3 or Na2SO4 can be recovered by cooling crystallization. Combining cooling crystallization with the common ion effect of Na+, different processes can be designed to recover NaF from different fluorine containing solutions. This will have a significant impact on the treatment of fluorine containing wastewater and the recycling of fluorine resources.
Collapse
|