1
|
Li J, Feng Y, Wang D, Li Y, Cai M, Tian Y, Pan Y, Chen X, Zhang Q, Li A. Optimization of sulfate reduction and methanogenesis via phase separation in a two-phase internal circulation reactor for the treatment of high-sulfate organic wastewater. WATER RESEARCH 2024; 260:121918. [PMID: 38896887 DOI: 10.1016/j.watres.2024.121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
To enhance the performance of the internal circulation (IC) reactor when treating high-sulfate organic wastewater, a laboratory-scale two-phase IC reactor with distinct phase separation capabilities was designed, and the sulfate reduction and methanogenesis processes were optimized by segregating the reactor into two specialized reaction zones. The results demonstrated that the first and second reaction areas of the two-phase IC reactor could be maintained at 4.5-6.0 and 7.5-8.5, respectively, turning them into the specialized phase for sulfate reduction and methanogenesis. Through phase separation, the two-phase IC reactor achieved a COD degradation and sulfate reduction efficiency of more than 80% when the influent sulfate concentration exceeded 5,000 mg/L, which were 32.32% and 16.04% higher than that before phase separation. Functional analyses indicated a greater activity of both the dissimilatory and assimilatory sulfate reduction pathways in the acidogenic phase, largely due to a rise in the relative abundance of the genera Desulfovibrio, Bacteroides, and Lacticaseibacillus, the primary carriers of sulfate reduction functional genes. In contrast, all the acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis pathways were inhibited in the acidogenic phase but thrived in the methanogenic phase, coinciding with shifts in the genus Methanothrix, which harbors the mcrA, mcrB, and mcrG genes essential for the final transformation step of all three methanogenesis pathways.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Duanhao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minhui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xun Chen
- Yangtze River Innovation Center for Ecological Civilization, Nanjing 210019, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362008, PR China.
| |
Collapse
|
2
|
Gil-Garcia C, Fuess LT, do Vale Borges A, Damianovic MHRZ. Phase separation as a strategy to prevent sulfide-related drawbacks in methanogenesis: performance and energetic aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31213-31223. [PMID: 38625470 DOI: 10.1007/s11356-024-33277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.
Collapse
Affiliation(s)
- Carolina Gil-Garcia
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil.
| | - André do Vale Borges
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo. Av. João Dagnone, Santa Angelina, 13.563-120, São Carlos, SP, 1100, Brazil
| | | |
Collapse
|
3
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Rogeri RC, Fuess LT, Eng F, Borges ADV, Araujo MND, Damianovic MHRZ, Silva AJD. Strategies to control pH in the dark fermentation of sugarcane vinasse: Impacts on sulfate reduction, biohydrogen production and metabolite distribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116495. [PMID: 36279773 DOI: 10.1016/j.jenvman.2022.116495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
pH is notably known as the main variable defining distinct metabolic pathways during sugarcane vinasse dark fermentation. However, different alkalinizing (e.g. sodium bicarbonate; NaHCO3) and/or neutralizing (e.g. sodium hydroxide; NaOH) approaches were never directly compared to understand the associated impacts on metabolite profiles. Three anaerobic structured-bed reactors (AnSTBR) were operated in parallel and subjected to equivalent operational parameters, except for the pH control: an acidogenic-sulfidogenic (R1; NaOH + NaHCO3) designed to remove sulfur compounds (sulfate and sulfide), a hydrogenogenic (R2; NaOH) aimed to optimize biohydrogen (bioH2) production, and a strictly fermentative system without pH adjustment (R3) to mainly evaluate lactic acid (HLa) production and other soluble metabolites. NaHCO3 dosing triggered advantages not only for sulfate reduction (up to 56%), but also to enhance the stripping of sulfide to the gas phase (75-96% of the theoretical sulfide produced) by the high and constant biogas flow resulting from the CO2 released during NaHCO3 dissociation. Meanwhile, molasses-based vinasse presented higher potential for bioH2 (up to 4545 mL-H2 L-1 d-1) and HLa (up to 4800 mg L-1) production by butyric-type and capnophilic lactic fermentation pathways. Finally, heterolactic fermentation was the main metabolic route established when no pH control was provided (R3), as indicated by the high production of both HLa (up to 4315 mg L-1) and ethanol (1987 mg L-1). Hence, one single substrate (from which one single source of inoculum was originated) offers a wide range of metabolic possibilities to be exploited, providing substantial versatility to the application of anaerobic digestion in sugarcane biorefineries.
Collapse
Affiliation(s)
- Renan Coghi Rogeri
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Felipe Eng
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - André do Vale Borges
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Matheus Neves de Araujo
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | | | - Ariovaldo José da Silva
- School of Agricultural Engineering (FEAGRI), University of Campinas (Unicamp), Av. Cândido Rondon, 501, Barão Geraldo, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
5
|
Tang M, Zhou S, Huang J, Sun L, Lu H. Stress responses of sulfate-reducing bacteria sludge upon exposure to polyethylene microplastics. WATER RESEARCH 2022; 220:118646. [PMID: 35661505 DOI: 10.1016/j.watres.2022.118646] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The stress responses of sulfate-reducing bacteria (SRB) sludge to polyethylene (PE) microplastic exposure were revealed for the first time. In this study, a lab-scale sulfate-reducing up-flow sludge bed reactor was continuously operated with different concentrations of PE microplastics in the feed (20, 100, and 500 microplastic particles (MPs)/L). Exposure to low levels of PE microplastics (i.e., 20 MPs/L) had a limited effect on SRB consortia, whereas higher levels of PE microplastics imposed apparent physiological stresses on SRB consortia. Despite this, the overall reactor performance, i.e., chemical oxygen demand removal and sulfate conversion, was less affected by prolonged exposure to PE microplastics. Moreover, as the concentration of PE microplastics increased, the SRB consortia promoted the production of extracellular polymeric substances to a greater extent, especially the secretion of proteins. As a result, protective effects against the cytotoxicity of PE microplastics were provided. Batch experiments further demonstrated that leaching additives from PE microplastics (including acetyl tri-n‑butyl citrate and bisphenol A, concentrations up to 5 μg/g sludge) exerted only a minor effect on the activity of SRB consortia. Additionally, microbial community analysis revealed active and potentially efficient sulfate reducers at different operational stages. Our results provide insight into the stress responses of SRB sludge under PE microplastic exposure and suggested that SRB consortia can gradually adapt to and resist high levels of PE microplastics. These findings may promote a better understanding of the stable operation of SRB sludge systems under specific environmental stimuli for practical applications.
Collapse
Affiliation(s)
- Mei Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Jiamei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
6
|
Wu X, Zhou Y, Liang M, Lu X, Chen G, Zan F. Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfate-reducing up-flow sludge bed reactor. BIORESOURCE TECHNOLOGY 2022; 355:127254. [PMID: 35525408 DOI: 10.1016/j.biortech.2022.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the effect of biochar on sulfate reduction and anaerobic acidogenic process was explored in a granular sulfate-reducing up-flow sludge bed reactor in both long-term operation and batch tests. Both bioreactors had a high sulfate reduction efficiency of over 95% during the long-term operation, while the reactor with biochar addition showed higher sulfate reduction efficiency and stronger robustness against volatile fatty acids accumulation with a higher organic loading and sulfate loading rate. Batch tests showed that adding biochar significantly lessened the lag phase of the sulfate-reducing process, accelerated the adaption of acidogens, and facilitated both production and utilization of volatile fatty acids. The microbial pathways proved that biochar could regulate the acidification fermentation pathway and facilitate the enrichment of assimilative desulfurization bacteria. Overall, this study revealed that the acidogenic sulfate-reducing metabolic pathway could be enhanced by biochar, offering a potential application for effective sulfate-laden wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Yawu Zhou
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), Green Environmental Remediation Technology Center (HUST-Hikee), and Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Miranda EM, Severson C, Reep JK, Hood D, Hansen S, Santisteban L, Hamdan N, Delgado AG. Continuous-mode acclimation and operation of lignocellulosic sulfate-reducing bioreactors for enhanced metal immobilization from acidic mining-influenced water. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128054. [PMID: 34986575 DOI: 10.1016/j.jhazmat.2021.128054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic sulfate-reducing bioreactors are an inexpensive passive approach for treatment of mining-influenced water (MIW). Typically, microbial community acclimation to MIW involves bioreactor batch-mode operation to initiate lignocellulose hydrolysis and fermentation and provide electron donors for sulfate-reducing bacteria. However, batch-mode operation could significantly prolong bioreactor start-up times (up to several months) and select for slow-growing microorganisms. In this study we assessed the feasibility of bioreactor continuous-mode acclimation to MIW (pH 2.5, 6.5 mM SO42-, 18 metal(loid)s) as an alternate start-up method. Results showed that bioreactors with spent brewing grains and sugarcane bagasse achieved acclimation in continuous mode at hydraulic retention times (HRTs) of 7-12-d within 16-22 days. During continuous-mode acclimation, extensive SO42- reduction (80 ± 20% -91 ± 3%) and > 98% metal(loid) removal was observed. Operation at a 3-d HRT further yielded a metal(loid) removal of 97.5 ± 1.3 -98.8 ± 0.9% until the end of operation. Sulfate-reducing microorganisms were detected closer to the influent in the spent brewing grains bioreactors, and closer to the effluent in the sugarcane bagasse bioreactors, giving insight as to where SO42- reduction was occurring. Results strongly support that a careful selection of lignocellulose and bioreactor operating parameters can bypass typical batch-mode acclimation, shortening bioreactor start-up times and promoting effective MIW metal(loid) immobilization and treatment.
Collapse
Affiliation(s)
- Evelyn M Miranda
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States; School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ 85281, United States
| | - Carli Severson
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States
| | - Jeffrey K Reep
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, United States
| | - Daniel Hood
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States
| | - Shane Hansen
- Freeport-McMoRan Inc., 800 E Pima Mine Rd, Sahuarita, AZ 85629, United States
| | - Leonard Santisteban
- Freeport-McMoRan Inc., 800 E Pima Mine Rd, Sahuarita, AZ 85629, United States
| | - Nasser Hamdan
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, United States
| | - Anca G Delgado
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287, United States; Center for Bio-mediated & Bio-inspired Geotechnics, Arizona State University, 425 E University Dr, Tempe, AZ 85281, United States; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, United States.
| |
Collapse
|
8
|
Dev S, Galey M, Chun CL, Novotny C, Ghosh T, Aggarwal S. Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia - a solution toward acid mine drainage treatment in cold regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:2007-2020. [PMID: 34821889 DOI: 10.1039/d1em00256b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Failure of sulfate-reducing bacteria (SRB)-mediated treatment of acid mine drainage (AMD) in cold regions due to inhibition of bacteria by acidic pH and low temperature can be overcome by enriching psychrophilic and acidophilic microbial consortia from local metal-rich sediments. In this study, we enriched microbial consortia from Arctic mine sediments at varying pH (3-7) and temperatures (15-37 °C) under anaerobic conditions with repeated sub-culturing in three successive stages, and analyzed the microbial community using 16S rRNA gene sequencing. The enriched SRB genera resulted in high sulfate reduction (85-88%), and significant metal removal (49-99.9%) during the initial stages (stage 1 and 2). Subsequently, sub-culturing the inoculum at pH 3-4.5 resulted in lower sulfate reduction (9-34%) due to the inhibition of SRB by accumulated acetic acid (0.3-9 mM). The microbial metabolic interactions for successful sulfate and metal removal involved initial glycerol co-fermentation to acetic acid at acidic pH (by Desulfosporosinus, Desulfotomaculum, Desulfurospora, and fermentative bacteria including Cellulomonas and Anaerovorax), followed by acetic acid oxidation to CO2 and H2 (by Desulfitobacterium) at neutral pH, and subsequent H2 utilization (by Desulfosporosinus). The results, including the structural and functional properties of enriched microbial consortia, can inform the development of effective biological treatment strategies for AMD in cold regions.
Collapse
Affiliation(s)
- Subhabrata Dev
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Miranda Galey
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chan Lan Chun
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chad Novotny
- Teck Resources Limited, Vancouver, BC V6C 0B3, Canada
| | - Tathagata Ghosh
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Department of Civil, Geological and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
9
|
Oliveira CA, Fuess LT, Soares LA, Damianovic MHRZ. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113254. [PMID: 34271347 DOI: 10.1016/j.jenvman.2021.113254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The competition between sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) depends on several factors, such as the COD/SO42- ratio, sensitivity to inhibitors and even the length of the operating period in reactors. Among the inhibitors, salinity, a characteristic common to diverse types of industrial effluents, can act as an important factor. This work aimed to evaluate the long-term participation of sulfidogenesis and methanogenesis in the sulfate-rich wastewater process (COD/SO42- = 1.6) in an anaerobic structured-bed reactor (AnSTBR) using sludge not adapted to salinity. The AnSTBR was operated for 580 d under mesophilic temperature (30 °C). Salinity levels were gradually increased from 1.7 to 50 g-NaCl L-1. Up to 35 g-NaCl L-1, MA and SRB equally participated in COD conversion, with a slight predominance of the latter (53 ± 11%). A decrease in COD removal efficiency associated with acetate accumulation was further observed when applying 50 g-NaCl L-1. The sulfidogenic pathway corresponded to 62 ± 17% in this case, indicating the inhibition of MA. Overall, sulfidogenic activity was less sensitive (25%-inhibition) to high salinity levels compared to methanogenesis (100%-inhibition considering the methane yield). The wide spectrum of SRB populations at different salinity levels, namely, the prevalence of Desulfovibrio sp. up to 35 g-NaCl L-1 and the additional participation of the genera Desulfobacca, Desulfatirhabdium, and Desulfotomaculum at 50 g-NaCl-1 explain such patterns. Conversely, the persistence of Methanosaeta genus was not sufficient to sustain methane production. Hence, exploiting SRB populations is imperative to anaerobically remediating saline wastewaters.
Collapse
Affiliation(s)
- Cristiane Arruda Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil; Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18, Conjunto Das Químicas, SP, 05508-000, Brazil
| | - Lais Américo Soares
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| |
Collapse
|
10
|
Li J, Liang Y, Miao Y, Wang D, Jia S, Liu CH. Metagenomic insights into aniline effects on microbial community and biological sulfate reduction pathways during anaerobic treatment of high-sulfate wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140537. [PMID: 32623173 DOI: 10.1016/j.scitotenv.2020.140537] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
For comprehensive insights into the change of sulfate reduction pathway responding to the toxic stress and the shift of microbial community and performance of sulfate reduction, we built a laboratory-scale expanded granular sludge bed reactor (EGSB) treating high-sulfate wastewater with elevated aniline concentrations from 0 to 480 mg/L. High-throughput sequencing and metagenomic approaches were applied to decipher the molecular mechanisms of sulfate reduction under aniline stress through taxonomic and functional profiles. The increasing aniline in the anaerobic system induced the accumulation of volatile fatty acids (VFA), further turned the bioreactor into acidification, which was the principal reason for the deterioration of system performance and finally resulted in the accumulation of toxic free sulfide. Moreover, aniline triggered the change of bacterial community and genes relating to sulfate reduction pathways. The increase of aniline from 0 to 320 mg/L enriched total sulfate-reducing bacteria (SRB), and the most abundant genus was Desulfomicrobium, accounting for 66.85-91.25% of total SRB. The assimilatory sulfate reduction pathway was obviously inhibited when aniline was over 160 mg/L, while genes associated with dissimilatory sulfate reduction pathways all exhibited an upward tendency with the increasing aniline content. The enrichment of aniline-resistant SRB (e.g. Desulfomicrobium) carrying genes associated with the dissimilatory sulfate reduction pathway also confirmed the underlying mechanism that sulfate reduction turned into dissimilation under high aniline condition. Taken together, these results comprehensively provided solid evidence for the effects of aniline on the biological sulfate reduction processes treating high-sulfate wastewater and the underlying molecular mechanisms which may highlight the important roles of SRB and related sulfate reduction genes during treatment.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Marais T, Huddy R, Harrison S, van Hille R. Effect of hydraulic residence time on biological sulphate reduction and elemental sulphur recovery in a single-stage hybrid linear flow channel reactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sulfidogenesis establishment under increasing metal and nutrient concentrations: An effective approach for biotreating sulfate-rich wastewaters using an innovative structured-bed reactor (AnSTBR). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Silva AFR, Magalhães NC, Cunha PVM, Amaral MCS, Koch K. Influence of COD/SO 42- ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110034. [PMID: 31932266 DOI: 10.1016/j.jenvman.2019.110034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Vinasse is sulfate-rich wastewater due to sulfuric acid dosage in some ethanol production steps. The vinasse sulfate concentration is subject to seasonal variations. A two-stage anaerobic membrane bioreactor (2S-AnMBR) was operated to evaluate the influence of COD/SO42- ratio on vinasse treatment performance by using a real vinasse sample under natural seasonal COD/SO42- variation. This ratio directly affects the sulfidogenesis efficiency, which is responsible for different forms of inhibition in the anaerobic treatment of sulfate-rich wastewater. The bioreactor presented a stable performance at the highest COD/SO42- ratios (50-94), with high removal of chemical oxygen demand (COD) (97.5 ± 0.4%) and volatile fatty acids (VFA) (98.0 ± 0.6%), but low removal of sulfate (69.9 ± 9.5%), indicating lower sulfate reducing bacteria (SRB) activity. In the lowest COD/SO42- ratios (9-20), a deterioration in the removal of organic matter (87.0 ± 1.3%) and VFA (69.8 ± 15.5%) was observed, accompanied by sulfate removal increase (92.9 ± 2.6%). A significant correlation between COD fractions removed via methanogenesis and sulfidogenesis and the COD/SO42- ratio was found, indicating that the increase of this ratio is beneficial to the methanogenic archaea activity. The occurrence of sulfidogenesis, favored by the lower COD/SO42- ratios, induced the microbial soluble products (SMP) and extracellular polymeric substances (EPS) release and protein/carbohydrate ratio increase in the mixed liquor, contributing to the filtration resistance increase.
Collapse
Affiliation(s)
- Ana Flávia Rezende Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Natalie Cristine Magalhães
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Vitor Martinelli Cunha
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Konrad Koch
- Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H 2S and SO 42- Microsensors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062023. [PMID: 32204360 PMCID: PMC7142855 DOI: 10.3390/ijerph17062023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
Microelectrodes can be used to obtain chemical profiles within biofilm microenvironments. For example, sulfate (SO42-) and hydrogen sulfide (H2S) microelectrodes can be used to study sulfate reduction activity in this context. However, there is no SO42- microelectrode available for studying sulfate reduction in biofilms. In this study, SO42- and H2S microelectrodes were fabricated and applied in the measurement of a wastewater membrane-aerated biofilm (MAB) to investigate the in situ sulfate reduction activity. Both the SO42- and H2S microelectrodes with a tip diameter of around 20 micrometers were successfully developed and displayed satisfying selectivity to SO42- and H2S, respectively. The Nernstian slopes of calibration curves of the fabricated SO42- electrodes were close to -28.1 mV/decade, and the R2 values were greater than 98%. Within the selected concentration range from 10-5 M (0.96 mg/L) to 10-2 M (960 mg/L), the response of the SO42- microelectrode was log-linearly related to its concentration. The successfully fabricated SO42- microelectrode was combined with the existing H2S microelectrode and applied on an environmental wastewater biofilm sample to investigate the sulfate reduction activity within it. The H2S and SO42- microelectrodes showed stable responses and good performance, and the decrease of SO42- with an accompanying increased of H2S within the biofilm indicated the in situ sulfate reduction activity. The application of combined SO42- and H2S microelectrodes in wastewater biofilms could amend the current understanding of sulfate reduction and sulfur oxidation within environmental biofilms based on only H2S microelectrodes.
Collapse
|
15
|
Sinharoy A, Baskaran D, Pakshirajan K. A novel carbon monoxide fed moving bed biofilm reactor for sulfate rich wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109402. [PMID: 31450202 DOI: 10.1016/j.jenvman.2019.109402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, a moving bed biofilm reactor was used for biodesulfuruization using CO as the sole carbon substrate. The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was examined. At 72, 48 and 24 h HRT, the sulfate removal was 93.5%, 91.9% and 80.1%, respectively. An increase in the sulfate loading reduced the sulfate reduction efficiency, which, however, was improved by increasing the CO flow rate into the MBBR. Best results in terms of sulfate reduction (>80%) were obtained for low inlet sulfate and high CO loading conditions. The CO utilization was very high at 85% throughout the study, except during the last phase of the continuous bioreactor operation it was around 70%. An artificial neural network based model was successfully developed and optimized to accurately predict the bioreactor performance in terms of both sulfate reduction and CO utilization. Overall, this study showed an excellent potential of the moving bed biofilm bioreactor for efficient sulfate reduction even under high loading conditions.
Collapse
Affiliation(s)
- Arindam Sinharoy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Divya Baskaran
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Fuess LT, Zaiat M, do Nascimento CAO. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. BIORESOURCE TECHNOLOGY 2019; 286:121379. [PMID: 31051398 DOI: 10.1016/j.biortech.2019.121379] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 05/15/2023]
Abstract
An innovative application of the anaerobic structured-bed reactor (AnSTBR) in thermophilic dark fermentation of sugarcane vinasse targeting biohydrogen (bioH2) production was assessed. A detailed metabolite monitoring program identified the major substrates and primary metabolic pathways within the system. Increasing the applied organic loading rate positively affected bioH2 production, reaching 2074 N mL-H2 L-1 d-1 and indicating an optimal load of approximately 70 kg-COD m-3 d-1. Controlling the fermentation pH (5.0-5.5) was the primary strategy to maintain bioH2-producing conditions, offsetting negative impacts associated with the compositional variability of vinasse. Metabolic correlations pointed out lactate as the primary substrate for bioH2 production, indicating its accumulation as evidence of impaired reactors. The versatility of the acidogenic system was confirmed by identifying three major metabolic pathways according to the pH, i.e., lactate-producing (pH <5.0), bioH2-/butyrate-producing (pH = 5.0-5.5) and bioH2-producing/sulfate-reducing (pH >6.0) systems, which enables managing the operation of the reactors for diversified purposes in practical aspects.
Collapse
Affiliation(s)
- Lucas Tadeu Fuess
- Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18 - Conjunto das Químicas, SP 05508-000, Brazil; Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av. João Dagnone 1100, São Carlos, SP 13563-120, Brazil.
| | - Marcelo Zaiat
- Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av. João Dagnone 1100, São Carlos, SP 13563-120, Brazil.
| | - Claudio Augusto Oller do Nascimento
- Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18 - Conjunto das Químicas, SP 05508-000, Brazil.
| |
Collapse
|