1
|
Chen J, Sun Y, Chen H. Enhancing methane production in anaerobic digestion of waste activated sludge by combined thermal hydrolysis and photocatalysis pretreatment. BIORESOURCE TECHNOLOGY 2024; 411:131353. [PMID: 39186988 DOI: 10.1016/j.biortech.2024.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Thermal hydrolysis (TH) is promising for sludge pretreatment, but the refractory substances generated at high temperatures inhibit anaerobic digestion. In this study, a novel combined TH and photocatalytic pretreatment method was proposed to improve the anaerobic digestion performance of waste activated sludge. The results showed that the combined pretreatment (170 °C, 0.5 g/L TiO2) increased methane yield by 66 % from 111 ± 5 m L/g VS to 185 ± 5 m L/g VS. After TH pretreatment, photocatalysis further promoted sludge solubilization by destroying extracellular polymeric substances, resulting in an increase in released soluble organic matter from 292 ± 16 mg/L to 4,091 ± 85 mg/L. In addition, photocatalysis improved the biodegradability of sludge by reducing the melanoidin and humic acid contents by 26 % and 20 %, respectively. The proposed novel pretreatment method effectively overcomes the bottleneck of TH technology and provides an alternative pretreatment technology for improving sludge resource recovery.
Collapse
Affiliation(s)
- Jian Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Functionalization of titania nanotubes surface with platinum(II) complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
g-C3N4/TiO2 S-scheme heterojunction photocatalyst with enhanced photocatalytic Carbamazepine degradation and mineralization. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability. SUSTAINABILITY 2022. [DOI: 10.3390/su14127191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anaerobic digestion (AD) is the strategy of producing environmentally sustainable bioenergy from waste-activated sludge (WAS), but its efficiency was hindered by low biodegradability. Hence, the usage of nanomaterials was found to be essential in enhancing the degradability of sludge due to its nanostructure with specific physiochemical properties. The application of nanomaterials in sludge digestion was thoroughly reviewed. This review focused on the impact of nanomaterials such as metallic nanoparticles, metal oxide nanoparticles, carbon-based nanomaterials, and nanocomposite materials in AD enhancement, along with the pros and cons. Most of the studies detailed that the addition of an adequate dosage of nanomaterial has a good effect on microbial activity. The environmental and economic impact of the AD enhancement process is also detailed, but there are still many existing challenges when it comes to designing an efficient, cost-effective AD digester. Hence, proper investigation is highly necessary to assess the potency of utilizing the nanomaterials in enhancing AD under various conditions.
Collapse
|
5
|
Maryam A, Badshah M, Sabeeh M, Khan SJ. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment. BIORESOURCE TECHNOLOGY 2021; 325:124677. [PMID: 33493745 DOI: 10.1016/j.biortech.2021.124677] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Waste activated sludge generated from wastewater treatment plants makes an abundant source of biomass. Its effective utilization through anaerobic digestion (AD) requires pretreatment to disintegrate the sludge matrix and increase organic matter availability. In this study, dewatered waste activated sludge (DWAS) was subjected to alkaline, photocatalytic, and alkaline-photocatalytic pretreatment for its disintegration and subsequent methane production using different concentrations of sodium hydroxide and titania nanoparticles. Individual pretreatment resulted in maximum disintegration degree (DDsCOD) of 11.3 and 5.2% at 0.8% NaOH and 0.6 gTiO2/L, respectively. Alkaline-photocatalytic pretreatment yielded 37% DDsCOD at 0.8% NaOH-0.4 g/L TiO2. As compared to control, AD at 0.4% NaOH and 0.5 g/L TiO2 pretreatments yielded maximum methane, which was 50.4 and 32.6% higher. Similarly, alkaline-photocatalytic pretreatment at 0.4% NaOH-0.5 g/L TiO2 yielded methane as 462 N mL/g VS, which was 71.1% higher. Modified Gompertz model fitted the methane yield data well.
Collapse
Affiliation(s)
- Ayesha Maryam
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mariam Sabeeh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
6
|
Barakat MA, Kumar R, Eniola JO. Adsorption and photocatalytic scavenging of 2-chlorophenol using carbon nitride-titania nanotubes based nanocomposite: Experimental data, kinetics and mechanism. Data Brief 2020; 34:106664. [PMID: 33385029 PMCID: PMC7770541 DOI: 10.1016/j.dib.2020.106664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/24/2022] Open
Abstract
Adsorption and interaction of pollutant species on surface of the catalyst materials play an important role on the photocatalysis process. Herein, experimental data on the adsorption behavior of 2-chlorophenol (2-CP) onto graphitic pure carbon nitride (C3N4), titania nanotubes (TiO2—NTs) and carbon nitride/titania nanotubes nanocomposite (C3N4/TiO2—NTs) from synthetic wastewater has been summarized. The data on photocatalytic degradation of the 2-CP under both ultraviolet (UV) and visible light irradiation is also presented. This work also evaluates the 2-CP scavenging efficiency of C3N4/TiO2—NTs nanocomposite prepared by calcination of 2 wt.% melamine with TiO2—NTs at 450 °C. The adsorption and photocatalysis experiments were conducted for 180 min at pH 7 with 100 mL solution of 2-CP (40 mg/L) and 0.05 g catalyst material. The acquired data can be valuable to identify the equilibrium time for 2-CP adsorption onto C3N4, TiO2—NTs, and C3N4/TiO2—NTs nanocomposite. Moreover, the obtained data can be useful to identify the suitable light source for the decomposition of 2-CP in the aquatic environment. The evaluated kinetic data might be significant for identifying the adsorption and photocatalysis reaction rate onto the applied catalyst materials. The obtained adsorption and photocatalysis data have been compared with that in literature to identify the adsorption and photocatalysis behavior of 2-CP on numerous catalysts at different experimental conditions.
Collapse
Affiliation(s)
- M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamiu O Eniola
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Lin Z, Yu B, Huang J. Cellulose-Derived Hierarchical g-C 3N 4/TiO 2-Nanotube Heterostructured Composites with Enhanced Visible-Light Photocatalytic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5967-5978. [PMID: 32370515 DOI: 10.1021/acs.langmuir.0c00847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel cellulose-derived hierarchical g-C3N4/TiO2-nanotube heterostructured nanocomposite was fabricated by in situ coating thin g-C3N4 layers onto the surfaces of the TiO2 nanotubes, which were synthesized by utilizing the natural cellulose substance (e.g., commercial ordinary filter paper) as the structural template. These g-C3N4/TiO2-nanotube composites with varied thicknesses (ca. 3-30 nm) of the outer g-C3N4 layers displayed improved visible-light (λ > 420 nm)-driven photocatalytic degradation performances toward methylene blue. The optimal nanocomposite with an outer g-C3N4 layer of ca. 7.5 nm composed of 46 wt % g-C3N4 displayed an apparent rate constant of 0.0035 min-1, which was 8.5- and 4-fold larger than those of the referential TiO2-nanotube and g-C3N4 powder. The excellent and durable photocatalytic activities of these cellulose-derived g-C3N4/TiO2-nanotube composites were ascribed to their hierarchically network porous structures replicated from the cellulose template, as well as the formation of close heterojunctions in-between the g-C3N4 and TiO2 phases. Moreover, it was demonstrated that the photocatalytic mechanism matched with the type-II heterostructured model, while the main effective species during the photocatalytic processes of the nanocomposite were proved to be superoxide radicals.
Collapse
Affiliation(s)
- Zehao Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bo Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
8
|
|
9
|
S-rGO/ZnS nanocomposite-mediated photocatalytic pretreatment of dairy wastewater to enhance aerobic digestion. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM. Polymeric graphitic carbon nitride (g-C 3N 4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:25-40. [PMID: 30844543 DOI: 10.1016/j.jenvman.2019.02.075] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 05/06/2023]
Abstract
In recent years, various facile and low-cost methods have been developed for the synthesis of advanced nanostructured photocatalytic materials. These catalysts are required to mitigate the energy crisis, environmental deterioration, including water and air pollution. Among the various semiconductors explored, recently novel classes of polymeric graphitic carbon nitride (g-C3N4)-based heterogeneous photocatalysts have established much greater importance because of their unique physiochemical properties, large surface area, low price, and long service life, ease of synthesis, product scalability, controllable band gap properties, low toxicity, and high photocatalytic activity. The present comprehensive review focuses on recent achievements in a number of facile chemical synthesis methods for semiconducting polymeric carbon nitrides and their heterogeneous nanohybrids with various dopants, nanostructured metals, metal oxides, and nanocarbons, as well as the parameters influencing their physiochemical properties and photocatalytic efficiency, which are discussed with reference to various catalytic applications such as air (NOx) purification, wastewater treatment, hydrogen generation, CO2 reduction, and chemical transformation. The mechanisms for the superior photocatalytic activity of polymeric g-C3N4-based heterogeneous photocatalysts are also discussed. Finally, the challenges, prospects, and future directions for photocatalytic polymeric g-C3N4-based semiconducting materials are described.
Collapse
Affiliation(s)
- Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580030, Affiliated to Visvesvaraya Technological University, Karnataka, India
| | - Shim Jaesool
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | | |
Collapse
|
11
|
Synthesis and characterization of S-doped-rGO/ZnS nanocomposite for the photocatalytic degradation of 2-chlorophenol and disinfection of real dairy wastewater. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Ma W, Wang N, Lu Y, Lu Z, Tang X, Li S. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method. NEW J CHEM 2019. [DOI: 10.1039/c8nj04973d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The as-synthesised Fe3O4@Bi2O3/C significantly inhibited the recombination of electron–hole pairs and improved the tetracycline degradation efficiency.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| | - Na Wang
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| | - Yao Lu
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou 450000
| | - Ziyang Lu
- School of the Environment and Safety Engineering, Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xu Tang
- Institute for Advanced Materials, School of Materials Science, Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Songtian Li
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| |
Collapse
|
13
|
Synthesis of CuO–GO/TiO2 visible light photocatalyst for 2-chlorophenol degradation, pretreatment of dairy wastewater and aerobic digestion. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0921-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|