1
|
Douibi M, Carpio MJ, Rodríguez-Cruz MS, Sánchez-Martín MJ, Marín-Benito JM. Herbicide and metabolite mobility in soil profiles under conventional tillage and non-tillage: A two-year comparative field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178969. [PMID: 40010249 DOI: 10.1016/j.scitotenv.2025.178969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
A two-year field experiment was conducted to compare the impact of conventional tillage (CT) and non-tillage (NT) on the mobility in two soils (S1 and S2) of the herbicides S-metolachlor (SMOC), foramsulfuron (FORAM), and thiencarbazone-methyl (TCM), and the formation of their main metabolites. Herbicide and metabolite distribution through the soil profiles (0-50 cm) was determined over two maize cycles. After the first application, the mobility of SMOC and TCM was similar under CT conditions, with higher concentrations in S2 + CT topsoil than in S1 + CT due to the higher organic carbon content in S2 and its retention ability, while both herbicides were detected in the entire S1 + CT profile over time. Under NT management, partial interception by the mulch during application reduced the amount of herbicides that initially reached the topsoil, modifying their mobility dynamics. SMOC and TCM properties facilitated their transport through the soil profile, favoured by the irrigation applied shortly after their application. The total SMOC and TCM balance in S1 and S2 profiles revealed possible leaching below 50 cm, especially in soils+CT. However, the simultaneous degradation of SMOC and TCM might also occur on the mulch and/or in soil profiles, as indicated by the continuous detection of two SMOC metabolites (ethane sulfonic acid, SMOC-ESA, and oxanilic acid, SMOC-OA) and one TCM metabolite (thiencarbazone, TCM-MET1) throughout the soil profile in all the treatments assayed. FORAM dissipated faster than SMOC and TCM in all the treatments, with a total balance in all the soil profiles <40 % after 13 days. The high water solubility and polarity of FORAM might have enhanced its leaching, although its degradation to its two main metabolites was also observed in all cases. The mobility dynamics of the three herbicides in the second experimental period were similar for both soils under CT, but differed in soils under NT compared to the first application, with higher interception by the greater amount of mulch on the soil surface in the second year.
Collapse
Affiliation(s)
- Marwa Douibi
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M José Carpio
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
2
|
Carpio MJ, Andrades MS, Herrero-Hernández E, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Changes in vineyard soil parameters after repeated application of organic-inorganic amendments based on spent mushroom substrate. ENVIRONMENTAL RESEARCH 2023; 221:115339. [PMID: 36682445 DOI: 10.1016/j.envres.2023.115339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The changes of physicochemical and biochemical parameters of a silty loam (S1) and sandy loam (S2) vineyard soils added with spent mushroom substrate (SMS) or SMS composted with ophite (OF) as rock dust (SMS + OF) were studied. Two doses of SMS or SMS + OF (25 and 100 Mg ha-1) were applied for two consecutive years (2020-2021) and changes of soil physicochemical parameters, and dehydrogenase activity (DHA), respiration (RES), microbial biomass (BIO), and the phospholipid fatty acids (PLFAs) profile were assayed on a temporal basis. The results showed an increase in soil organic carbon (OC) content, total and mineralised N, P, and K, especially when the highest SMS dose was applied to soils. Repeated application caused OC content over time up to 2.3 times higher than initial content in the silty loam soil. This increase was not observed in sandy soil, possibly due to a higher bioavailability of OC, as indicated by the evolution of extractable humic acid/fulvic acid pools. In both soils, all biochemical parameters increased after amendment, being favoured both by the OC and by the presence of OF. Significant positive correlations were found between DHA, RES and BIO, and OC content especially in the first part and then levelled off after the second dose application. Total bacterial or fungal PLFAs patterns reflected the variation of BIO by SMS application. The higher growth of fungi vs. bacterial community in amended soils was recorded after the first SMS application, although the opposite effect occurred after the second application, with similar results in both soils. The findings indicate that the application of SMS or SMS + OF in vineyard soils could be an appropriate agronomic management practice for maintaining soil sustainability, although doses and application times of these amendments should first be evaluated depending on soil texture.
Collapse
Affiliation(s)
- M José Carpio
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Soledad Andrades
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios 51, 26006, Logroño, Spain
| | - Eliseo Herrero-Hernández
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain; Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, Plaza de Los Caídos s/n, 37008, Salamanca, Spain
| | - Jesús M Marín-Benito
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - María J Sánchez-Martín
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| |
Collapse
|
3
|
Organic Amendment for the Recovery of Vineyard Soils: Effects of a Single Application on Soil Properties over Two Years. Processes (Basel) 2022. [DOI: 10.3390/pr10020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spent mushroom substrate (SMS) is the organic residue generated during mushroom cultivation, and it is being produced in ever-greater quantities around the world. Different applications for this residue have been proposed for its valorization, but its application as a soil amendment could be one of the most sustainable. SMS improves soil quality by increasing its organic matter (OM), thereby enhancing the sustainability of agricultural systems. The objective of this work was to evaluate the effect of the application of two doses of SMS on the chemical, biochemical, and microbiological characteristics of two degraded vineyard soils in La Rioja (Spain) with different textures, as a new regenerative agricultural practice. The variations in organic carbon (OC), micro- and macronutrients, soil microbial biomass (BIO), respiration (RES), dehydrogenase activity (DHA), and the profile of phospholipid fatty acids (PLFAs) extracted from the soils were evaluated over two years. An initial increase in soil OC content was recorded in both soils, although the content that remained over time differed for each site. In general, SMS enhanced DHA, RES, and BIO in the soils, but the effect varied, possibly being conditioned by the availability of OC for soil microorganisms. In general, changes in the soils’ microbial structure after SMS application were not very significant over the two-year experimental period.
Collapse
|
4
|
Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. ENVIRONMENTS 2021. [DOI: 10.3390/environments8040032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The management of large volumes of organic residues generated in different livestock, urban, agricultural and industrial activities is a topic of environmental and social interest. The high organic matter content of these residues means that their application as soil organic amendments in agriculture is considered one of the more sustainable options, as it could solve the problem of the accumulation of uncontrolled wastes while improving soil quality and avoiding its irreversible degradation. However, the behavior of pesticides applied to increase crop yields could be modified in the presence of these amendments in the soil. This review article addresses how the adsorption–desorption, dissipation and leaching of pesticides in soils is affected by different organic residues usually applied as organic amendments. Based on the results reported from laboratory studies, the influence on these processes has been evaluated of multiple factors related to organic residues (e.g., origin, nature, composition, rates, and incubation time of the amended soils), pesticides (e.g., with different use, structure, characteristics, and application method), and soils with different physicochemical properties. Future perspectives on this topic are also included for highlighting the need to extend these laboratory studies to field and modelling scale to better assess and predict pesticide fate in amended soil scenarios.
Collapse
|
5
|
Marín-Benito JM, Herrero-Hernández E, Ordax JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. The role of two organic amendments to modify the environmental fate of S-metolachlor in agricultural soils. ENVIRONMENTAL RESEARCH 2021; 195:110871. [PMID: 33581091 DOI: 10.1016/j.envres.2021.110871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
S-metolachlor is a widely used herbicide that may contaminate groundwater when applied to irrigated crops, especially when the soil has a low organic carbon (OC) content. The objective here was to assess the capacity of two organic wastes, namely, green compost (GC) and pelletised organo-mineral manure fertilizer (PM), applied to two soils (S) with different textures at a rate of 10% dry weight to modify the fate of S-metolachlor. The herbicide's Freundlich adsorption coefficient (Kf) increased within a range of 3.2-8.2 times in S + GC and 3.8-6.8 times in S + PM. A positive correlation between adsorption and OC and the coefficient of variation of the OC normalised adsorption coefficients (Kfoc) higher than 20% indicated the evident influence on this process of soil OC content and its nature. The increase in adsorption did not prevent the dissipation of S-metolachlor in the amended soils, although the degradation rate decreased up to ~2 times or was not significantly modified across the different soil types. The S-metolachlor metabolites, metolachlor ethane sulfonic acid and metolachlor oxanilic acid, were detected in the herbicide's dissipation in the unamended soils, but they were not detected in the amended soils. The mobility experiments indicated leached amounts of S-metolachlor higher than 50% in unamended soil. The amounts decreased 1.1-1.7 times and 1.7-1.8 times in the S + GC and S + PM when a saturated flow was applied. Moreover, breakthrough curves indicated a slow leaching kinetics of herbicide in amended soils, with low concentrations continuously detected in the leachates together with a decrease in the maximum peak concentration. The results show the effect of the application of organic wastes especially in sandy soils to promote the immobilisation and/or degradation of S-metolachlor, avoiding its transfer to other environmental compartments.
Collapse
Affiliation(s)
- Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Eliseo Herrero-Hernández
- Department of Analytical Chemistry, Nutrition and Food Science. University of Salamanca, Plaza de Los Caídos S/n, 37008, Salamanca, Spain
| | - José M Ordax
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Jesús Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
6
|
García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122162. [PMID: 32004763 DOI: 10.1016/j.jhazmat.2020.122162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The spread of organic pollutants from soil to other environments is one important source of environmental pollution. The addition of organic amendments to soil is an interesting strategy to control pollutants leaching. However, the contribution of different carbon types of organic amendments to organic pollutants adsorption is not clear. Hence, the objective of this work was to determine the role of carbon types of organic amendments into the adsorption of four herbicides. To this extent, organic amendments were characterized by elemental analysis and 13C-NMR and adsorption-desorption isotherms of herbicides by the organic amendments and two soils amended with them were obtained. Adsorption coefficients were correlated with the organic carbon content of the organic amendments and the adsorption process was enhanced by the hydrophobicity of herbicides and the aliphatic and aromatic carbon of amendments. Organic amendments increased the adsorption of herbicides by soils but it is not possible to extrapolate results from one soil to another because organo-mineral interactions between soils and organic amendments can modify this process. Desorption isotherms of herbicides from organic amendments and/or amended soils presented hysteresis indicating the irreversible adsorption of herbicides. Desorption results indicated, the abundance of O-alkyl and N-alkyl groups in organic amendments enhanced the hysteresis in amended soils.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain; Department of Geology and Geochemistry, Autonomous University of Madrid. 28049, Madrid, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008, Salamanca, Spain.
| |
Collapse
|
7
|
Marín-Benito JM, Mamy L, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS. Modelling herbicides mobility in amended soils: Calibration and test of PRZM and MACRO. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137019. [PMID: 32070888 DOI: 10.1016/j.scitotenv.2020.137019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Addition of organic residues to soil is a current farming practice but it is not considered in the modelling studies for pesticide risk assessment at regulatory level despite its potential impact on the pesticide dynamics in soil. Thus, the objective of this work was to examine and to compare the ability of PRZM and MACRO pesticide fate models to simulate soil water content, and bromide (Br-, tracer), chlorotoluron and flufenacet concentrations in the soil profiles (0-100 cm) of one agricultural soil, unamended (control soil, S), amended with spent mushroom substrate (S + SMS) or amended with green compost (S + GC). Based on a two-year field-scale dataset, the models were first calibrated against measurements of water and solutes contents in the soil profiles (first year) and then tested without any further model calibration by comparison with the field observations of the second year. In general, the performance of MACRO to simulate the whole dataset in the three soil treatments was higher than that of PRZM. MACRO simulated satisfactorily the water dynamics along the soil profiles whereas it was poorly described by the capacity model PRZM. Both models predicted very well the Br- mobility in control and amended soils after dispersion parameters were fitted to observations. No calibration was necessary to reproduce correctly herbicides vertical distribution in the control soil profile. In the amended soils, MACRO simulations were highly correlated to the observed vertical distribution of flufenacet and chlorotoluron, but calibration of the Kd of chlorotoluron was needed. On the contrary, modelling with PRZM required calibration of Kd and DT50 of both herbicides to obtain an acceptable agreement between observations and predictions in the amended soils. Kd and DT50 calibration was based on the initial dissolved organic carbon contents (DOC) of amended soils. It allowed to take into account the processes that decrease the herbicides sorption on the soil and enhance their bioavailability, but that are not described in PRZM and MACRO (such as the formation of herbicide-DOC mobile complexes). This work showed that models such as PRZM and MACRO are able to simulate the fate of pesticides in amended soils. However, before using these models as predictive tools in large amended soil conditions, and especially in the regulatory context, further modelling studies should focus on other pedoclimatic-pesticides-organic residues combinations, and on longer periods.
Collapse
Affiliation(s)
- Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
| | - María J Carpio
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| |
Collapse
|
8
|
Pang K, Zhao H, Hu J. Hydrolysis of Amisulbrom in Buffer Solutions and Natural Water Samples: Kinetics and Products Identification. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:689-700. [PMID: 32303813 DOI: 10.1007/s00128-020-02838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the hydrolysis of amisulbrom in buffer solutions and natural water samples were investigated. Effects of pH and temperature were tested in buffer solutions. Amisulbrom was stable in acidic and neutral aqueous solutions at 25°C, while quickly hydrolyzed with a half-life of 4.5 days (25°C) at pH 9.0. The kinetics rate equation was determined as k = 1.0234 × 1010 exp (-61.3760/R·T) (R2 = 0.9642) for hydrolysis of amisulbrom at pH 9.0. The pH, ionic strength, and solubility were important factors influencing the hydrolysis of amisulbrom in natural water samples. Furthermore, three hydrolysis products were separated and identified in buffer solution (pH 9.0) and natural water samples. A tentative transformation mechanism of amisulbrom was proposed to rationalize the formation of HPs (hydrolysis products) based on their structural identification, DFT (density functional theory), and hydrolysis profiles. Toxicity prediction using the quantitative structure-activity relationship model revealed that the HP-I, and HP-II were more toxic than the parent amisulbrom. This investigation was the first to evaluate the behavior of amisulbrom hydrolysis in aquatic systems.
Collapse
Affiliation(s)
- Kyongjin Pang
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Honglei Zhao
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Jiye Hu
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
9
|
Carpio MJ, Rodríguez-Cruz MS, García-Delgado C, Sánchez-Martín MJ, Marín-Benito JM. Mobility monitoring of two herbicides in amended soils: A field study for modeling applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110161. [PMID: 32090848 DOI: 10.1016/j.jenvman.2020.110161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This paper reports the mobility and total balance of chlorotoluron (CTL), flufenacet (FNC) and bromide ion (Br-) throughout a sandy soil profile after the application of spent mushroom substrate (SMS) and green compost (GC). Obtaining mobility dataset is crucial to simulate the herbicides' fate under amended soil scenarios by application pesticide leaching models with regulatory application (FOCUS models). The application of organic residues is nowadays increased to improve the crop yields and there is a gap in the simulations of this kind of amended scenarios. A two-year field experiment involving unamended soil (S) and SMS- or GC-amended soil plots was conducted. CTL, FNC, and Br- were annually applied and their residual concentrations were determined in soil profiles (0-100 cm) regularly sampled. In all the treatments the order of mobility is followed as FNC < CTL < Br-. SMS and GC increased herbicide retention in the top 10 cm by the higher organic carbon (OC) content than the unamended soil, and their ability to increase the soil's water-holding capacity and to decrease water percolation. Simultaneously dissolved organic carbon (DOC) content facilitated herbicide transport being it favoured by the initial soil moisture content and the rainfall shortly after the chemicals' initial application. Over the first year, residual amounts (<2.6%) of Br-, CTL and FNC were leached down to 90-100 cm depth in the three treatments. However, over the second year low CTL and FNC amounts (<1.0%) reached the bottom layer only in S + SMS although high Br- concentrations did so in the three treatments (<20%). According to the total balance of Br-, CTL, and FNC in the soil profiles other processes (degradation, mineralisation, bound residues formation, and/or crop uptake) different from leaching below 1 m depth might play a key role in their dissipation especially in the amended soil profiles. SMS and GC are likely to be used as organic amendments to preserve the soil and water quality but in the case of SMS, its higher DOC content could imply a higher potential risk for groundwater contamination than GC.
Collapse
Affiliation(s)
- María J Carpio
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain; Department of Geology and Geochemistry, Autonomous University of Madrid, 28049, Madrid, Spain.
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
10
|
Barba V, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Transport of 14C-prosulfocarb through soil columns under different amendment, herbicide incubation and irrigation regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134542. [PMID: 31734489 DOI: 10.1016/j.scitotenv.2019.134542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
This study sets out to evaluate the effect on the leaching of prosulfocarb through packed soil columns of applying green compost (GC) as an organic amendment (20% w/w), herbicide ageing over 28 days in the soil (incubation vs. no incubation), and two different irrigation regimes (saturated or saturated-unsaturated flows). Peak concentrations decreased after herbicide incubation in the columns for both unamended (S) and amended (S + GC) soils under both flow regimes. The leached amounts decreased when the herbicide was incubated for 28 days in S (2.1 and 1.9 times) and S + GC (2.9 and 1.6 times), under saturated or saturated-unsaturated flow, respectively. In the S columns, the total amounts retained (43.3%-60.8%) were lower than the ones obtained for the S + GC columns under saturated flow (77.4%-85.2%), suggesting a stronger interaction between the herbicide and the GC-amended soil. This behaviour was not observed under saturated-unsaturated flow, as the total amounts retained were similar in both the S and S + GC columns. Prosulfocarb was primarily retained in the first segment of the S (>28%) and S + GC (>43%) columns under all conditions. Incubation time did not greatly affect the herbicide retention, but it significantly increased the mineralized amount under saturated flow. The total balances of 14C-prosulfocarb were >73% and >80% in the S and S + GC columns, respectively, indicating that amendment decreased prosulfocarb loss by volatilization. Several factors, such as amendment, herbicide ageing and water flow, proved to be important for controlling the leaching of this herbicide through the soil profile.
Collapse
Affiliation(s)
- Víctor Barba
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
11
|
Barba V, Marín-Benito JM, García-Delgado C, Sánchez-Martín MJ, Rodríguez-Cruz MS. Assessment of 14C-prosulfocarb dissipation mechanism in soil after amendment and its impact on the microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109395. [PMID: 31272022 DOI: 10.1016/j.ecoenv.2019.109395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Adding organic amendments to soil could modify the bioavailability of herbicides and lead to changes in the microbial community's activity and structure. The objective here was to study the dissipation and total mass balance of 14C-labeled prosulfocarb applied at two rates (4 and 10 mg kg-1) in unamended and green compost (GC)-amended soil. Soil dehydrogenase activity (DHA) and phospholipid fatty acid (PLFA) profile analysis were determined to evaluate the effect of herbicide residues on microbial community's activity and structure over the dissipation period. The dissipation rate of prosulfocarb decreased after soil amendment due to higher herbicide adsorption by the amended soil. The 50% dissipation time (DT50) increased 1.7 times in the unamended soil when the concentration of prosulfocarb increased 2.5 times. The mass balance results indicate that the sum of water and organic extractable fractions represented the highest amounts up to the dissipation of 50% 14C-prosulfocarb. The 14C-herbicide was then mainly mineralized (up to 11%-31%) or formed non-extractable residues (up to 35%-44%). The amount of 14C-prosulfocarb residues extracted with methanol was slightly higher in amended soils than in unamended ones. 14C-prosulfocarb mineralization was higher in unamended soils than in amended ones. The formation of non-extractable residues was continuous, and increased over time. Soil DHA decreased in the unamended soil and was maintained in the GC-amended soil at the end of the assay. The microbial structure was barely disturbed over the prosulfocarb degradation process, although it was clearly influenced by the application of GC. The results obtained reveal the influence organic amendment has on herbicide bioavailability to decrease its biodegradation and buffer its impact on the soil microbial structure.
Collapse
Affiliation(s)
- Víctor Barba
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain.
| |
Collapse
|
12
|
Núñez-Delgado A. Editorial: Technically-based use of by-products as a tool to control pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:65-67. [PMID: 31026804 DOI: 10.1016/j.jenvman.2019.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This Virtual Special Issue of Journal of Environmental Management dealt with the recycling of waste and by-products, focusing on their use in controlling environmental pollution. The field of research was previously considered as promising, in view of its relevance and the increasing number of papers published in last years. And this Special Issue allows going a step ahead in the matter, with 90 submissions and a number of 48 high quality papers finally accepted and published. We think that it will be useful at a global level, especially for researchers, social partners, and social actors involved in environmental and public health issues related to environmental pollution.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Univ. Santiago de Compostela, Engineering Polytechnic School, Campus Univ. s/n, 27002 Lugo, Spain.
| |
Collapse
|
13
|
Development and Application of the Dispersive Solid-Phase Extraction Method Based on Molecular Imprinted Polymers for Removal of Matrix Components of Bivalve Shellfish Extracts in the GC–MS/MS Analysis of Amide/Dinitroaniline/Substituted Urea Herbicides. Chromatographia 2019. [DOI: 10.1007/s10337-019-03729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
García-Delgado C, Barba-Vicente V, Marín-Benito JM, Mariano Igual J, Sánchez-Martín MJ, Sonia Rodríguez-Cruz M. Influence of different agricultural management practices on soil microbial community over dissipation time of two herbicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1478-1488. [PMID: 30235633 DOI: 10.1016/j.scitotenv.2018.07.395] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Soil microbiology could be affected by the presence of pesticide residues during intensive farming, potentially threatening the soil environment. The aim here was to assess the dissipation of the herbicides triasulfuron and prosulfocarb, applied as a combined commercial formulation, and the changes in soil microbial communities (through the profile of phospholipid fatty acids (PLFAs) extracted from the soil) during the dissipation time of the herbicides under field conditions. The dissipation of herbicides and the soil microbial structure were assessed under different agricultural practices, such as the repeated application of herbicides (twice), in unamended and amended soils with two organic amendments derived from green compost (GC1 and GC2) and with non-irrigation and irrigation regimes. The results obtained indicate slower dissipation for triasulfuron than for prosulfocarb. The 50% dissipation time (DT50) decreased under all conditions for the second application of triasulfuron, although not for prosulfocarb. The DT50 values for both herbicides increased in the GC2 amended soil with the highest organic carbon (OC) content. The DT50 values decreased for prosulfocarb with irrigation, but not for triasulfuron, despite its higher water solubility. The herbicides did not have any significant effects on the relative population of Gram-negative and Gram-positive bacteria during the assay, but the relative abundance of Actinobacteria increased in all the soils with herbicides. At the end of the assay (215 days), the negative effects of herbicides on fungi abundance were significant (p < 0.05) for all the treatments. These microbiological changes were detected in non-irrigated and irrigated soils, and were more noticeable after the second application of herbicides. Actinobacteria could be responsible for the modification of herbicide degradation rates, which tend to be faster after the second application. This study makes a useful contribution to the evaluation of the soil environment and microbiological risks due to the long-term repeated application of herbicides under different agricultural management practices.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain
| | - Víctor Barba-Vicente
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain
| | - Jesús M Marín-Benito
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain
| | - J Mariano Igual
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain
| | - María J Sánchez-Martín
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain
| | - M Sonia Rodríguez-Cruz
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 40-52 Cordel de Merinas, 37008 Salamanca, Spain.
| |
Collapse
|